K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

a, Gọi \(d=ƯCLN\left(n+4;n+5\right)\left(d\in N\right)\)

\(\Leftrightarrow\hept{\begin{cases}n+4⋮d\\n+5⋮d\end{cases}}\)

\(\Leftrightarrow1⋮d\)

Vì \(d\in N;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(n+4;n+5\right)=1\)

Vậy ...

27 tháng 8 2017

còn phần b T^T

5 tháng 7 2019

Em thử nhé, ko chắc đâu

a) \(B=\frac{n^3+2n^2+2n+1}{n^3+2n^2+2n+1}-\frac{2n+2}{n^3+2n^2+2n+1}=1-\frac{2\left(n+1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=1-\frac{2}{n^2+n+1}=\frac{n^2+n-1}{n^2+n+1}\)

b) Đặt (n2+n-1 ; n2+n+1) = d

Thì \(\left\{{}\begin{matrix}n^2+n-1⋮d\\n^2+n+1⋮d\end{matrix}\right.\Rightarrow2⋮d\)

Dễ thấy d khác 2 vì n2+n-1 ; n2+n+1 luôn là số lẻ với mọi n thuộc Z.

Do đó d = 1 hay phân số rút gọn luôn tối giản

5 tháng 7 2019

\(B=\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}=\frac{\left(n^3+n^2\right)+\left(n^2-1\right)}{\left(n^3+n^2\right)+\left(n^2+n\right)+\left(n+1\right)}=\frac{n^2\left(n+1\right)+\left(n+1\right)\left(n-1\right)}{n^2\left(n+1\right)+n\left(n+1\right)+\left(n+1\right)}=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=\frac{n^2+n-1}{n^2+n+1}\)

\(Gọi:d=\left(n^2+n+1,n^2+n-1\right)\Rightarrow n^2+n+1-\left(n^2+n-1\right)⋮d\Leftrightarrow n^2-n^2+n-n+1+1⋮d\Leftrightarrow2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)

\(n^2+n+1=n\left(n+1\right)+1\)n và n+1 là 2 so tự nhiên liên tiếp => có 1 so chan trong 2 so n và n+1 \(\Rightarrow n\left(n+1\right)chan\Rightarrow n\left(n+1\right)+14le\Rightarrow n^2+n+1\text{ }le\Rightarrow d\text{ }le\Rightarrow d=1\Rightarrow\forall n\in Z\text{ thì phân so rút gọn toi gian}\)

12 tháng 11 2016

câu a thì phải

12 tháng 11 2016

a/b là phân thức tối giản nên suy ra a ko chia hết cho b 

a/a+b ta có a chia hết cho a mak a ko chia hết cho b nên a chia hết cho a+b

suy ra a/a+b là phân thức tối giản

8 tháng 11 2015

Gọi \(d=ƯCLN\left(2n+1;2n^2-1\right);n\in N\)

Ta có:

\(2n+1\)chia hết cho \(d\Rightarrow n\left(2n+1\right)\) chia hết cho  \(d\)

và \(2n^2-1\) chia hết cho  \(d\)

nên \(\left(n\left(2n+1\right)-2n^2+1\right)\)chia hết cho  \(d\)

\(\Leftrightarrow n+1\)chia hết cho \(d\)

\(\Leftrightarrow2n+2\) chia hết cho \(d\)


\(\Leftrightarrow2n+2-\left(2n+1\right)\)chia hết cho \(d\)


\(\Leftrightarrow1\)chia hết cho \(d\Rightarrow d=1\)

Vậy, phân số \(B=\frac{2n+1}{2n^2-1}\) tối giản với  \(n\in N\)