K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

Trục căn thức đi là ra thôi

Bài 2:

a: Ta có: \(M=2x\left(2x^3-3x\right)-x^2\left(3x^2-2\right)-x^2\left(x^2-4\right)\)

\(=4x^4-6x^2-3x^4+2x^2-x^4+4x^2\)

=0

b: Ta có: \(N=x\left(y^2-x\right)-y\left(xy-x^2\right)-x\left(xy-x-1\right)\)

\(=xy^2-x^2-xy^2+x^2y-x^2y+x^2+x\)

\(=x\)

Chọn A

16 tháng 9 2021

Thanks bn, mà bn ơi? Cho mik hỏi là cách giải nó ntn dạ? :3

18 tháng 8 2016

1)  =( 2x -1)2 + (y-2)2 - 5 

GTNN = -5

10 tháng 4 2018

\(x^2+y^2+z^2=x\left(y+z\right)\Rightarrow2x^2+2y^2+2z^2=2xy+2xz\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2xz=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+y^2+z^2=0\)

\(\Rightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2=0\)

Vì \(\left(x-y\right)^2\ge0\forall x,y\)

\(\left(x-z\right)^2\ge0\forall x,z\)

\(y^2\ge0\forall y\)

\(z^2\ge0\forall z\)

\(\Rightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2\ge0\forall x,y,z\)

Dấu = xảy ra <=>\(\hept{\begin{cases}x=y\\x=z\\y=0;z=0\end{cases}}\)

=> x=y=z=0 là nghiệm của pt

28 tháng 4 2019

Em mới lớp 7 thôi nên không chắc

Nhân 2 vào hai vế:

\(PT\Leftrightarrow2x^2+2y^2+2z^2=2xy+2xz\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2=0\)

Đến đây dễ rồi.

15 tháng 10 2017

có con chó mới làm người yêu mày

15 tháng 10 2017

nguyen duc manh nên vào trại TTK (tâm thân kinh)

22 tháng 10 2018

A B C M N x

Trên tia đối của tia CB lấy điểm N sao cho AC = CN

Ta thấy Cx là tia phân giác ^ACN; M thuộc Cx => ^ACM = ^NCM

Xét \(\Delta\)ACM và \(\Delta\)NCM có: CA=CN; ^ACM = ^NCM; CM chung => \(\Delta\)ACM = \(\Delta\)NCM (c.g.c)

=> MA = MN (2 cạnh tương ứng)

Xét \(\Delta\)MBN có: MN + MB > BN (BĐT tam giác) => MN + MB > CN + CB (1)

Thay MA = MN (cmt); AC = CN vào (1) => MA + MB > AC + CB (đpcm).