Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các điều kiện xác định hợp lại sẽ là \(\left\{{}\begin{matrix}2\le x\le4\\0\le y\le2\end{matrix}\right.\)
Ta có \(8\sqrt{xy-2y}-8y+4\) \(=8\sqrt{y\left(x-2\right)}-8y+4\) \(\le4\left(y+x-2\right)-8y+4\) (BĐT AM-GM) \(=4\left(x-y\right)-4\)
Do vậy, \(\left(x-y\right)^2=8\sqrt{xy-2y}-8y+4\le4\left(x-y\right)-4\) \(\Leftrightarrow\left(x-y\right)^2-4\left(x-y\right)+4\le0\) \(\Leftrightarrow\left(x-y-2\right)^2\le0\) \(\Leftrightarrow x-y-2=0\) \(\Leftrightarrow y=x-2\), điều này cũng thỏa mãn ĐTXR của BĐT \(8\sqrt{y\left(x-2\right)}=4\left(y+x-2\right)\). Do đó, pt đầu tiên của hệ \(\Leftrightarrow y=x-2\) hay \(x=y+2\)
Thay vào pt thứ 2 của hệ, ta có
\(2\sqrt{2y-y^2}\left(\sqrt{4-2y}-2\sqrt{2y}+1\right)=4y+5\sqrt{2-y}-10\sqrt{y}\)
\(\Leftrightarrow\left(4-2y\right)\sqrt{2y}-4y\sqrt{4-2y}+2\sqrt{y\left(2-y\right)}=4y+5\sqrt{2-y}-10\sqrt{y}\)
Mình mới làm được đến đây thôi. Mình phải đi ngủ rồi, thế nên mai mình suy nghĩ tiếp nhé.
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
a/
ĐKXĐ: \(x\ge\frac{5}{3}\)
\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)
\(\Rightarrow x=3\)
b/ \(\left\{{}\begin{matrix}2x-y\ge1\\x+2y\ge0\end{matrix}\right.\) (1)
Biến đổi pt dưới:
\(\left(2\left(x+2y\right)-1\right)\sqrt{2x-y-1}=\left(2\left(2x-y-1\right)-1\right)\sqrt{x+2y}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2y}=a\ge0\\\sqrt{2x-y-1}=b\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(2a^2-1\right)b=\left(2b^2-1\right)a\)
\(\Leftrightarrow2a^2b-2ab^2+a-b=0\)
\(\Leftrightarrow2ab\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Rightarrow a=b\) (do \(\left\{{}\begin{matrix}a\ge0\\b\ge0\end{matrix}\right.\) \(\Rightarrow2ab+1>0\))
\(\Rightarrow\sqrt{x+2y}=\sqrt{2x-y-1}\Leftrightarrow x+2y=2x-y-1\)
\(\Leftrightarrow x=3y+1\)
Thế vào pt trên:
\(\left(3y+1\right)^2-5y^2-8y-3=0\)
\(\Leftrightarrow4y^2-2y-2=0\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=4\\y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\end{matrix}\right.\)
Thế nghiệm vào hệ điều kiện (1) thì chỉ có \(\left(x;y\right)=\left(4;1\right)\) thỏa mãn
Câu a) Cứ bình phương và bình phương cho hết căn rồi bấm máy tính giải ra :v
b)pt\(\left(2\right)\)\(\Leftrightarrow\left(2x+4y-1\right)^2\left(2x-y-1\right)=\left(4x-2y-3\right)^2\left(x+2y\right)\)
\(\Leftrightarrow\left(x-3y-1\right)\left(8x^2-8y^2-4x-8y+12xy-1\right)=0\)
Đến đây tự giải thế vào (1)
Nguyễn Việt Lâm Giải giúp t TH2 nha!
tth coi như chú chưa giải được nhé, 3GP cho bác Lâm :]]]
Mà mình có được tick GP đouu :>
ĐK: \(x\ge2,y\ge2\)
Chú ý \(x^2+xy+2y^2\ge x^2+xy+2y^2-\frac{7}{16}\left(x-y\right)^2=...\)
(Đẳng thức xảy ra khi x = y)
Từ đó$:$ \(\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)
$\geqq \frac{1}{4} \Big[(3x+5y) +(5x+3y)\Big]$
$=2(x+y)=\text{VP(1)}$
Đẳng thức xảy ra khi x = y.
Thay vào, PT(2) tương đương với$:$
\(\left(8x-6\right)\sqrt{x-1}=\left(2+\sqrt{x-2}\right)\left(x+4\sqrt{x-2}+3\right)\)
Đặt \(\sqrt{x-2}=a\left(a\ge0\right)\Rightarrow x=a^2+2\)
PT \(\Leftrightarrow\left(8a^2+10\right)\sqrt{a^2+1}=\left(2+a\right)\left(a^2+4a+5\right)\)
\(\Leftrightarrow\) $a (-4 + 3 a) (65 + 56 a + 86 a^2 + 24 a^3 + 21 a^4) =0$
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=\frac{4}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y=2\\x=y=\frac{34}{9}\end{matrix}\right.\) (TMĐK)
Vậy....