Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 1931 = a ( cho đơn giản nha)
\(A=\frac{\frac{a}{19}+5}{a+5}=\frac{a+95}{19\left(a+5\right)}\)
\(B=\frac{a+5}{19a+5}\)
Ta có
\(B-A=\frac{a+5}{19a+5}-\frac{a+95}{19\left(a+5\right)}=-\frac{1620a}{19\left(a+5\right)\left(19a+5\right)}< 0\)
Vậy A > B
Cách khá nhé
Ta có
\(19A=\frac{30^{31}+19.5}{30^{31}+5}=1+\frac{90}{30^{31}+5}\)
\(19B=\frac{30^{32}+19.5}{30^{32}+5}=1+\frac{90}{30^{32}+5}\)
Vì \(30^{31}+5< 30^{32}+5\Rightarrow\frac{90}{30^{31}+5}>\frac{90}{30^{32}+5}\)
\(\Rightarrow1+\frac{90}{30^{31}+5}>1+\frac{90}{30^{32}+5}\)
\(\Rightarrow19A>19B\Rightarrow A>B\)
\(2023A=\dfrac{2023^{31}+4046}{2023^{31}+2}=1+\dfrac{4044}{2023^{31}+2}\)
\(2023B=\dfrac{2023^{32}+4046}{2023^{32}+2}=1+\dfrac{4044}{2023^{32}+2}\)
mà 2023^31+2<2023^32+2
nên A>B
\(a,27^4\cdot81^{10}=\left(3^3\right)^4\cdot\left(3^4\right)^{10}=3^{12}\cdot3^{40}=3^{52}\\ b,=8^{31}\cdot32^5:64^4=\left(2^3\right)^{31}\cdot\left(2^5\right)^5:\left(2^6\right)^4=2^{93}\cdot2^{25}:2^{24}=2^{93+25-24}=2^{94}\)
\(\left(3^{31}+3^{32}+3^{33}\right):\left(3^{30}+3^{29}+3^{28}\right)\)
\(=\left(3^{31}+3^{31}.3+3^{31}.3^2\right):\left(3^{28}.3^2+3^{28}.3+3^{28}\right)\)
\(=3^{31}.\left(1+3+3^2\right):3^{28}\left(3^2+3+1\right)\)
\(=\left(3^{31}:3^{28}\right).\left[\left(1+3+3^2\right):\left(1+3+3^2\right)\right]\)
\(=3^3.1\)
\(=27\)
3^31:3^30+3^31:3^29+3^31:3^28+3^32:3^30+3^32:3^29+3^32:3^28+3^33:3^30+3^33:3^29+3^33:3^28
3+3^2+3^3+3^2+3^3+3^4+3^3+3^4+3^5=507
đề có pải là A=\(\frac{19^{30}+5}{19^{31}+5}\) ; B=\(\frac{19^{31}+5}{19^{32}+5}\) PẢI KO BẠN