K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2020

Ta có: 1 + ( 1  + 2 ) + ( 1 + 2 + 3 ) + ... + ( 1 + 2 + 3 +...+ 2020) 

= ( 1 + 1 + 1 +... + 1 ) + (2 + 2 +...+ 2 ) + ( 3 + 3+...+ 3 ) + ...+ 2020

Có 2020 số 1 ; 2019 số 2 ; 2018 số 3 ;... ; 1 số 2020 

=  2020 x 1 + 2019 x 2 + 2018 x 3 + ... + 2020x 1

=> \(M=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+...+2020\times1}\)

\(\frac{1\times2020+2\times2019+...+2020\times1}{1\times2020+2\times2019+...+2020\times1}=1\)

15 tháng 4 2023

\(A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)

Ta có: \(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)\)

\(=\left(1+1+1+...+1\right)+\left(2+2+2+...+2\right)+\left(3+3+3+...+3\right)+...+\left(2019+2019\right)+2020\)

Trong đó có: 2020 số 1, 2019 số 2, 2018 số 3,..., 2 số 2019, 1 số 2020

Vậy: \(\left(1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+3+...+3\right)+...+2020\)

\(=1\times2020+2\times2019+3\times2018+...+2020\times1\)

\(\Rightarrow A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)

\(A=\dfrac{1\times2020+2\times2019+3\times2018+...+2020\times1}{1\times2020+2\times2019+3\times2018+...+2020\times1}=1\)

1 tháng 6 2020

Cácbạn ghi rõ lời giải giúp mình nhé.

Thanks các bạn!

1 tháng 6 2020

ta có 1/2*2/3*...*2019/2020

=1*2*3*...*2019/2*3*4*..*2020

=1/2020 (rút gọn các số giống nhau)

11 tháng 12 2021

Mình nghĩ là 1

11 tháng 12 2021

mik nghĩ vậy nhưng chưa bít trình bày í

17 tháng 4 2022