K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

M = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)

=> 3M = \(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\)

=> 3M - M = ( \(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\)  ) - ( \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\))

2M = 1 - \(\frac{1}{6561}\)

2M = \(\frac{6560}{6561}\)

=> M = \(\frac{3280}{6561}\)

1 tháng 7 2018

\(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+.......+\frac{1}{6561}\)

\(\Rightarrow M=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.........+\frac{1}{3^8}\)

\(\Rightarrow3M=3\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.........+\frac{1}{3^8}\right)\)

\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+............+\frac{1}{3^7}\)

\(\Rightarrow3M-M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..........+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-.......-\frac{1}{3^8}\)

\(\Rightarrow2M=1-\frac{1}{3^8}\)

\(\Rightarrow M=\frac{1-\frac{1}{3^8}}{2}\)

Vậy M = \(\frac{1-\frac{1}{3^8}}{2}\)

9 tháng 8 2019

Ta có: 

\(S=3.2^0-3^1+3.2^1-3^2+3.2^2+3.2^3-3^3+3.2^4-3^4+...-3^7+3.2^{10}+3.2^{11}-3^8+3.2^{12}\)

\(=3.\left(2^0+2^1+2^2+2^3+2^4+...+2^{10}+2^{11}+2^{12}\right)-\left(3^1+3^2+3^3+...+3^7+3^8\right)\)

Đặt: \(A=2^0+2^1+2^2+...+2^{11}+2^{12}\)

=> \(2.A=2^1+2^2+2^3+...+2^{12}+2^{13}\)

=> \(2.A-A=2^{13}-2^0\)

\(\Rightarrow A=2^{13}-1=8191\)

Đặt: \(B=3^1+3^2+3^3+...+3^8\)

 \(\Rightarrow3.B=3^2+3^3+3^4+...+3^9\)

=> \(3B-B=3^9-3^1=19680\)

=> \(2B=19680\Rightarrow B=9840\)

=> S=3.A-B=3.8191-9840=14733

22 tháng 8 2018

\(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)

\(3B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\)

\(2B=1-\frac{1}{3^8}\)

\(B=\frac{1-\frac{1}{3^8}}{2}\)

22 tháng 8 2018

B = 1/3 + 1/9 + 1/27 + ... + 1/6561 

B = 1/3^1 + 1/3^2 + 1/3^3 + ... + 1/3^8 

3B = 1 + 1/3^1 + 1/3^2 + ... + 1/3^7 

3B - B = ( 1 + 1/3^1 +1/3^2 + ... + 1/3^7 ) - ( 1/3^1 + 1/3^2 + 1/3^3 + .... + 1/3^8 ) 

2B = 1 - 1/3^8

B = 1 - 1/3^8  / 2

10 tháng 7 2018

T = 5.5 + 6.6 + .... + 30.30 

T = 5.(6 - 1) + 6.(7-1) + ... + 30.(31 - 1) 

T = 5.6 - 5 + 6.7 - 6 + ... + 30.31 - 30 

T = (5.6 + 6.7 + ... + 30.31) - (5 + 6 + ... + 30) 

Đặt A = 5.6+ 6.7 + ... + 30.31  

     B = 5 + 6 + ... + 30 

Ta có : 

3A = 5.6.3 + 6.7.3 + ... + 30.31 . 3 

3A = 5.6.(7-4) + 6.7.(8-5) + ... + 30.31.(32-29) 

3A = 5.6.7 - 4.5.6 + 6.7.8 - 5.6.7 + ... + 30.31.32 - 29.30.31

3A = (5.6.7 + 6.7.8 + ... + 30.31.32) - (4.5.6 + 5.6.7 + ... + 29.30.31) 

3A  = 30.31.32 - 4.5.6 

3A = 29640

A = 29640 : 3 

A = 9880

SSH của B là : (30 - 5) : 1 + 1  = 26 (số hạng) 

Tổng B là : (30 + 5) . 26  : 2  =455 

=> T = A - B = 9880 - 455 = 9425

c, S = 1 + 3 + 9 + 27 + 81 + 243 + 729 + 2187 + 6561

S = (3 + 2187) + (9 + 6561) + (27 + 243) + (81 + 729) +  1 

S = 2190 + 6570 + 270 + 810 + 1 

S = (2190 + 810) + 6570 + 270 + 1 

S = 3000 + 6570 + 270 + 1 

S = 9570 + 270 + 1 

S = 9840  + 1 

S = 9841 

Vậy S = 9841 

9 tháng 7 2018

a, B=68×75+34×50

   B=68×75+68×25

   B=68×(75+25)

   B=68×100

   B=6800

6 tháng 7 2016

Đặt A=1/3 + 1/9 + 1/27 + 1/81 + 1/24 + 1/729

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^6}\)

\(3A=3\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)\)

\(3A=1+\frac{1}{3}+...+\frac{1}{3^5}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)\)

\(2A=1-\frac{1}{3^6}\)

\(A=\frac{1-\frac{1}{3^6}}{2}\)

6 tháng 7 2016

hâm ak giải cách tiểu học cho tui dễ hiểu !!!

5 tháng 8 2016

1 + 2/   =

1+ 2/

1 + 2/3

5 tháng 8 2016

\(\text{Đ}\text{ặt}:A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(\Rightarrow3A=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow3A-A=3-\frac{1}{729}\)

\(\Rightarrow2A=\frac{2186}{729}\)

\(\Rightarrow A=\frac{2186}{729}:2=\frac{1093}{729}\)