Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho M = {99 ; 101 ; 103 ; a} ; N = {99 ; 97 ; 101 ; 103 ; 87 ; 77 }
Để M⊂N thì giá trị của a có thể là :
10
200
77
15
Đoạn cuối đáng là \(\frac{3}{x.\left(x+3\right)}\) nhưng bạn ghi lộn nha!
\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow\frac{x+2}{x+3}=\frac{100}{101}\Rightarrow x=100-2\)
\(\Rightarrow x=98\)
\(\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{1}{x.\left(x+3\right)}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+........+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{100}{101}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{101}\)
\(\Rightarrow x+3=101\)
\(\Rightarrow x=98\)
M=101^102+1/101^103+1
M=101^102+1/101^102*101+1
M=1/101+2
M=1/102
N=101^103+1/101^104+1
N=101^103+1/101^103*101+1
N=1/101+1
N=1/102
Vậy N=M
\(N=\frac{101^{103}+1}{101^{104}+1}<\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}\)
=> N < M
\(M=\frac{101}{1.4}+\frac{101}{4.7}+\frac{101}{7.10}+...+\frac{101}{2017.2020}\)
\(M=\frac{101}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2017}-\frac{1}{2020}\right)\)
\(M=\frac{101}{3}.\left(1-\frac{1}{2020}\right)\)
\(M=\frac{101}{3}.\frac{2019}{2020}\)
\(M=\frac{637}{20}\)
M = \(\frac{101}{1.4}+\frac{101}{4.7}+\frac{101}{7.10}+...+\frac{101}{2017.2020}\)
M = \(101.\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2017.2020}\right)\)
M = \(\frac{101}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{2017}-\frac{1}{2020}\right)\)
M = \(\frac{101}{3}.\frac{2019}{2020}\)
M = \(\frac{673}{20}\)