Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=-6 và y=8 vào biểu thức A:
\(A=\left[\left(-6\right)^2-\left(-6\right).8+8^2\right].\left[2.\left(-6\right)+3.8\right]\\ =\left[36+48+64\right].\left[-12+24\right]\\ =148.12=1776\)
thì... cứ thay vô mà tính thôi
Với x=-6 y=8 thì
A=(62+6.8+82)(2.6+3.8)
=(36+48+64)(12+24)
=148.36
=5328
1/ \(\left(x^2+1\right)\left(x-2\right)+2x=4.\)
\(\left(x^2+1\right)\left(x-2\right)+2x-4=0\)
\(\left(x^2+1\right)\left(x-2\right)+\left(2x-4\right)=0\)
\(\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)
\(\left(x-2\right)\left(x^2+1+2\right)=0\)
\(\left(x-2\right)\left(x^2+3\right)=0\)
TH1:\(x-2=0\Rightarrow x=2\)
TH2: \(x^2+3=0\)
\(\Rightarrow x^2=-3\)(vô lí)
\(\Rightarrow x\in\left\{2\right\}\)
2/ \(A=a\left(b-3\right)-b\left(b-1\right)\)
đề sai f ko ạ, do mik đâu thấy C mà bạn lại cho đề c=2???
\(B=xy\left(x+y\right)-2x-2y\)
\(B=xy\left(x+y\right)-\left(2x+2y\right)\)
\(B=xy\left(x+y\right)-2\left(x+y\right)\)
\(B=\left(x+y\right)\left(xy-2\right)\)
có xy=8 ; x+y=7
\(\Rightarrow B=\left(x+y\right)\left(xy-2\right)\)
\(\Rightarrow B=8\cdot\left(8-2\right)=8\cdot6=48\)
Đặt \(A=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)
\(B=\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(C=\frac{x+1}{2x^2+y+2}\)
Ta có:
A = \(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-y^2-xy-y^2}=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)
=>A=\(\frac{x^2-y^2+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)
B=\(\frac{\left(2x^2\right)^2+2.2x^2.y+y^2-4}{x^2+xy+x+y}=\frac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}=\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
=>\(P=\left(A:B\right):C\)
\(=\left[\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}:\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)
\(=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}.\frac{2x^2+y+2}{x+1}\)
\(=\frac{1}{2y-x}\)
=>\(P=\frac{1}{2y-x}\)
Thế x=-1,76 và y=3/25 vào P
=>\(P=\frac{1}{2.\frac{3}{25}-1,76}=\frac{1}{2}\)
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)
\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)
\(P=\frac{1}{2y-x}\)
Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)
Chọn B