Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
x+xy+y=4
=>x(y+1)+y+1=5
=>(x+1)(y+1)=5
=>\(\left(x+1;y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;4\right);\left(4;0\right);\left(-2;-6\right);\left(-6;-2\right)\right\}\)
a = p 1 m . p 2 n => a 3 = p 1 3 m . p 2 3 n Số ước của a 3 là: (3m+1)(3n+1) = 40
Suy ra m = 1; n = 3 hoặc m = 3; n = 1
Số a 2 có số ước là (2m+1)(2n+1) = 3.7 = 21 ước
\(a=p_1^x.p_2^y,a^3=p_1^{3x}.p_2^{3y},a^2=p_1^{2x}p_2^{2y}\).
Tổng số ước của \(a^3\)là \(\left(3x+1\right)\left(3y+1\right)=40=5.8=4.10=2.20=1.40\)
Vì \(3x+1>3,3y+1>3\)nên ta chỉ có hai trường hợp:
- \(\hept{\begin{cases}3x+1=5\\3y+1=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)(loại)
- \(\hept{\begin{cases}3x+1=4\\3y+1=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)(thỏa)
Vậy số ước của \(a^2\)là \(\left(1.2+1\right)\left(3.2+1\right)=21\).
Bài này mk học òi, a3 là a3, còn a2 là a2 nha, bn viết sai đề rùi đó
Do a là 1 hợp số khi phân tích ra thừa số nguyên tố chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2 => a = p1m . p2n (m,n thuộc N*)
=> a3 = p13m . p23m
=> số ước của a3 là (3m + 1).(3n + 1) = 40
=> 3m + 1 = 4, 3n + 1 = 10 hoặc 3m + 1 = 10, 3n + 1 = 4
=> 3m = 3, 3n = 9 hoặc 3m = 9, 3n = 3
=> m = 1, n = 3 hoặc m = 3, n = 9
+ Với m = 1, n = 3 => số ước của a2 là (2.1 + 1).(2.3 + 1) = 21 ( ước)
+ Với m = 3, n = 1 => số ước của a2 là (2.3 + 1).(2.1 + 1) = 21 ( ước)
Vậy a2 có 21 ước
Ủng hộ mk nha ♡_♡ ☆_☆
ta có : \(48=2\cdot24=4\cdot6=8\cdot3\)
vậy ta có 6 số thỏa mãn là số : \(2.3^{23},2^{23}.3,2^3.3^5,2^5.3^3,2^7.3^2,2^2.3^7\)