Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AC'=\(\sqrt{AD^2+AB^2+BB'^2}\)( công thức này bạn xem lại bài 12 trang 104 sgk toán 8 tập 2)
mà AD=AB=BB' (ABCD.A'B'C'D' là hình lập phương) => AC'= \(\sqrt{3AD^2}\) => \(\sqrt{3AD^2}\) = \(\sqrt{12}\)=> AD=2 \(S_{tp}\)= 6. a^2 =24; V=a^3=8Gọi cạnh lập phương là \(x\)
Theo Pitago: \(AB^2+BC^2=AC^2\Rightarrow2x^2=25\Rightarrow x=\frac{5\sqrt{2}}{2}\)
Diện tích xung quanh lập phương: \(S_{xq}=4x^2=50\left(cm^2\right)\)
\(S_{tp}=6x^2=75cm^2\)
\(V=x^3=\frac{125\sqrt{2}}{4}\left(cm^3\right)\)
a: AD vuông góc DC
AD vuông góc D'D
=>AD vuông góc (DCC'D')
=>AD vuông góc DC'
Xét tứ giác ADC'B' có
AD//C'B'
AD=C'B'
góc ADC'=90 độ
=>ADC'B' là hình chữ nhật
b: AA'=16cm
AB=12cm
=>A'B=20cm
=>AB'=20cm
A'C'=căn 29^2-16^2=3*căn 65(cm)
A'B'=12cm
=>B'C'=căn A'C'^2-A'B'^2=21(cm)
S ADC'B'=21*20=420cm2
Pythagorean theorem: \(AD=\sqrt{BD^2-AB^2}=4\) (cm)
\(\Rightarrow BC=AD=4\left(cm\right)\)
\(CC'=\sqrt{BC'^2-BC^2}=4\sqrt{2}\)
The lateral surface area: \(2CC'.\left(BC+AB\right)=56\sqrt{2}\left(cm^2\right)\)
AC'=\(\sqrt{AB^2+AD^2+AA'^2}\)=\(\sqrt{3^2+4^2+5^2}\)=5\(\sqrt{2}\).
AC'=\(\sqrt{AB^2+AD^2+AA'^2}\)=\(\sqrt{3^2+4^2+5^2}\)=5\(\sqrt{2}\).