Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=2019\sqrt{2019}+2018\sqrt{2018}\)
\(\Leftrightarrow x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=2018\left(\sqrt{2019}+\sqrt{2018}\right)+\sqrt{2019}\)
\(\Leftrightarrow x+y.\left(\sqrt{2019}-\sqrt{2018}\right)^2=2018+\sqrt{2019}\left(\sqrt{2019}-\sqrt{2018}\right)\)
\(\Leftrightarrow x+y\left(4037-2\sqrt{2019.2018}\right)=4037-\sqrt{2019.2018}\)
\(\Leftrightarrow x+4037.y-4037=2y\sqrt{2019.2018}-\sqrt{2019.2018}\)
\(\Leftrightarrow x+4037y-4037=\left(2y-1\right).\sqrt{2019.2018}\)(1)
Do \(x;y\) hữu tỉ \(\Rightarrow x+4037y-4037\) và \(2y-1\) đều là số hữu tỉ
Mà \(\sqrt{2019.2018}\) là số vô tỉ
\(\Rightarrow\)đẳng thức (1) xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}2y-1=0\\x+4037y-4037=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=\dfrac{4037}{2}\end{matrix}\right.\)
giải phương trình:\(\left(1+\sqrt{x^2+2020x}+2019\right)\left(\sqrt{x+2019}-\sqrt{x+1}\right)=2018\)
=>-(x+3)^2*(x-4)(x+12)=x^2-48x+576
=>-(x^2+6x+9)(x^2+8x-48)=x^2-48x+576
=>-x^4-14x^3-9x^2+216x+432=x^2-48x+576
=>x^4+14x^3+10x^2-264x+144=0
=>(x^2+4x-24)(x^2+10x-6)=0
=>\(x\in\left\{-5+\sqrt{31};-5-\sqrt{31};-2+2\sqrt{7};-2-2\sqrt{7}\right\}\)
C = ..................................................................... ( giống cái đề bài )
= ( x + 2017 ) + ( x + 2018 ) + ( x + 2019 )
= ( x + x + x ) + ( 2017 + 2018 + 2019 )
= 3x + 6054
Vì ( x + 2017 ) là căn bậc 2 của ( x+2017 )^2 => x+2017 > hoặc = 0
( x + 2018 ) ........................... ( x+2018)^2 => x+2018 > hoặc = 0
( x + 2019) ............................( x+2019 )^2 => x+2019 > hoặc = 0
SUY RA ( x+2017 ) + ( x+2018 ) + ( x+2019 ) > hoặc = 0 => 3x + 6054 > hoặc = 0
dấu đẳng thức xảy ra <=> 3x + 6054 = 0 <=> 3x = - 6054 <=> x = - 2018
Vậy C có GTNN là 0 khi x = - 2018
Lời giải:
PT \(\Leftrightarrow 2\sqrt{x+2018}+2\sqrt{y-2019}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow (x+2018-2\sqrt{x+2018}+1)+(y-2019-2\sqrt{y-2019}+1)+(z-2-2\sqrt{z-2}+1)=0\)
\(\Leftrightarrow (\sqrt{x+2018}-1)^2+(\sqrt{y-2019}-1)^2+(\sqrt{z-2}-1)^2=0\)
Vì \((\sqrt{x+2018}-1)^2\geq 0; (\sqrt{y-2019}-1)^2\geq 0; (\sqrt{z-2}-1)^2\geq 0\). Do đó để tổng của chúng bằng $0$ thì:
\((\sqrt{x+2018}-1)^2=(\sqrt{y-2019}-1)^2=(\sqrt{z-2}-1)^2= 0\)
\(\Rightarrow \left\{\begin{matrix} x=-2017\\ y=2020\\ z=3\end{matrix}\right.\)