Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(n^2+3n+1\right)-1=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Bn chứng minh biểu thức trên chia hết cho 3 và 2 nhé!
Sau đó lí luận là (3,2) = 1 và 3.23=24 nên biểu thức chia hết cho 24
P/s: ( Nếu có sai sót mong thông cảm =))
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-1\right)\left(n-2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)
c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)
Sửa đề: \(\left(n^2+n-1\right)^2-1\)
\(\Leftrightarrow\left(n^2+n\right)\left(n^2+n-2\right)\)
\(\Leftrightarrow n\left(n+1\right)n^2+2n-n-2\)
\(\Leftrightarrow n\left(n+1\right)n\left(n+2\right)-\left(n+2\right)\)
\(\Leftrightarrow\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\)( Tích 4 số tự nhiên liên tiếp)
Chúc bạn học tốt!!
cậu có saii đề không ạ ? Mình nghĩ là bình phương chứ?
\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)
Ta có: \(\left(n^2+3n+1\right)^2-1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
*Do n là số tự nhiên nên tích trên là tích 4 số tự nhiên liên tiếp
Trong 4 số tự nhiên liên tiếp có 2 số chẵn liên tiếp, trong đó 1 số chia hết cho 4, số còn lại chia hết cho 2
=> Tích đó chia hết cho 8(1)
Trong 4 số tự nhiên liên tiếp chia hết cho 3
=> Tích đó chia hết cho 3(2)
Từ (1) và (2)
=> Tích 4 số tự nhiên liên tiếp chia hết cho 24
=> ĐPCM*
\(\left(n^2+3n+1\right)^2-1\)
\(=n^4+9n^2+1+6n^3+6n+2n^2-1\)
\(=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho 2, 3, 4
mà \(\left(2,3,4\right)=1\)
nên \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho 24
hay \(\left(n^2+3n+1\right)^2-1\) chia hết cho 24