K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

dấu "=" xảy ra khi a=b nha

23 tháng 12 2018

Trả lời:

Dấu bằng xảy ra khi a=b

Học tốt

13 tháng 4 2018

khi a, b cùng dương hoặc âm

13 tháng 4 2018

dấu '='  xảy ra khi a=b

9 tháng 4 2018

khi và chỉ khi : a . b > 0

9 tháng 4 2018

Có chắc ko bạn

NV
21 tháng 8 2020

Dấu "=" đâu xảy ra tại đó bạn?

Chứng minh BĐT này đồng thời tìm dấu "=":

- Với \(\left|a\right|< \left|b\right|\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP>0\end{matrix}\right.\) \(\Rightarrow VP>VT\) BĐT hiển nhiên đúng

- Với \(\left|a\right|\ge\left|b\right|\) hai vế ko âm, bình phương 2 vế ta được:

\(a^2+b^2-2\left|ab\right|\le a^2+b^2-2ab\)

\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}ab\ge0\\\left|a\right|\ge\left|b\right|\end{matrix}\right.\)

28 tháng 6 2016

em ơi phần a có ( x+1)2 luôn luôn lớn hơn hoặc = 1 nên(x+1)2+5 luôn bằng 5 hoặc lớn hơn 5 . Ta không thể tìm được Max của A, nhỏ nhất khi x=-1

* Xem lại đề bài nhé!

B) Không thể tìm được gtln hay gtnn vì chẳng có tính chất nào với câu này cả em nhé

c) Để N lớn nhất thì (x-2)2+4 phải nhỏ nhất. Dễ thấy (x-2)^2-4 lên hơn hoặc bằng 4( bằng 4 khi x= -2) nên Min N= 2

28 tháng 6 2016

phần c mình ghi min sửa lại cho mình là MAX. Hihi ẩu quá

10 tháng 12 2018

Có \(\hept{\begin{cases}\left|a\right|+\left|b\right|\ge0\\\left|a-b\right|\ge0\end{cases}}\)

\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)

\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)

\(\Leftrightarrow a^2+2.\left|a\right|.\left|b\right|+b^2\ge a^2-2ab+b^2\)

\(\Leftrightarrow2.\left|a\right|.\left|b\right|\ge2ab\)( luôn đúng )

\(\Rightarrow\left|a\right|+\left|b\right|\ge\left|a-b\right|\)

                             đpcm

Gải sử.. 

\(1)\)\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)

\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)

Có \(\left|a-b\right|^2=\left(a-b\right)^2\)

\(\Leftrightarrow\)\(a^2+2\left|ab\right|+b^2\ge a^2-2ab+b^2\)

\(\Leftrightarrow\)\(\left|ab\right|\ge-ab\) ( đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(ab< 0\)

\(2)\)\(\left|a\right|+\left|b\right|+\left|c\right|\ge\left|a+b+c\right|\)

\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\ge\left|a+b+c\right|^2\)

Có \(\left|a+b+c\right|^2=\left(a+b+c\right)^2\)

\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left|ab\right|+2\left|bc\right|+2\left|ca\right|\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow\)\(\left|ab\right|+\left|bc\right|+\left|ca\right|\ge ab+bc+ca\) ( đúng ) 

Dấu "=" xảy ra khi a, b, c cùng dấu ( cùng dương hoặc cùng âm ) 

\(3)\) Sai đề thì phải. Giả sử \(a=3;b=0\) thì \(\left|a+b\right|< \left|1+ab\right|\)

\(\Leftrightarrow\)\(\left|3+0\right|< \left|1+3.0\right|\)\(\Leftrightarrow\)\(3< 1\) ( ??? ) 

...