K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

Bài cuối hơi khó nhìn, bạn thông cảm nhé! ^^

undefinedundefined

15 tháng 8 2018

a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+c^2a-c^2b+b^2\left(c-a\right)\)

\(=\left(a^2b-c^2b\right)-\left(a^2c-c^2a\right)-b^2\left(a-c\right)\)

\(=b\left(a^2-c^2\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)

\(=b\left(a-c\right)\left(a+c\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)

\(=\left(a-c\right)\left[b\left(a+c\right)-ac-b^2\right]\)

\(=\left(a-c\right)\left(ab+bc-ac-b^2\right)\)

\(=\left(a-c\right)\left[\left(ab-b^2\right)+\left(bc-ac\right)\right]\)

\(=\left(a-c\right)\left[b\left(a-b\right)+c\left(b-a\right)\right]\)

\(=\left(a-c\right)\left[b\left(a-b\right)-c\left(a-b\right)\right]\)

\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)

b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)

\(=a^3b-a^3c+c^3a-c^3b+b^3\left(c-a\right)\)

\(=\left(a^3b-c^3b\right)-\left(a^3c-c^3a\right)-b^3\left(a-c\right)\)

\(=b\left(a^3-c^3\right)-ac\left(a^2-c^2\right)-b^3\left(a-c\right)\)

\(=b\left(a-c\right)\left(a^2+ac+c^2\right)-ac\left(a-c\right)\left(a+c\right)-b^3\left(a-c\right)\)

\(=\left(a-c\right)\left[b\left(a^2+ac+c^2\right)-ac\left(a+c\right)-b^3\right]\)

\(=\left(a-c\right)\left(ba^2+abc+bc^2-a^2c-ac^2-b^3\right)\)

\(=\left(a-c\right)\left[\left(ba^2-a^2c\right)+\left(abc-ac^2\right)+\left(bc^2-b^3\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)+b\left(c^2-b^2\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b^2-c^2\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b-c\right)\left(b+c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left[a^2+ac-b\left(b+c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(a^2+ac-b^2-bc\right)\)

\(=\left(a-c\right)\left(b-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)

24 tháng 8 2018

nhiều thế, đăng ít một thôi bạn

24 tháng 8 2018

a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)

a: \(=ab\left(a+b\right)-bc\left(b+a\right)-bc\left(c-a\right)-ac\left(c-a\right)\)

\(=\left(a+b\right)\left(ab-bc\right)+\left(a-c\right)\left(bc-ac\right)\)

\(=\left(a+b\right)\cdot b\left(a-c\right)+\left(a-c\right)\cdot c\left(b-a\right)\)

\(=\left(a-c\right)\left(ab+b^2+cb-ac\right)\)

b: \(=ab^2+ac^2+bc^2+a^2b+a^2c+b^2c+2abc\)

\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2\)

\(=\left(a+b\right)\left(ab+c^2+ac+cb\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

d: \(=a^3\left(b-c\right)-b^3\left(b-c+a-b\right)+c^3\left(a-b\right)\)

\(=a^3\left(b-c\right)-b^3\left(b-c\right)-b^3\left(a-b\right)+c^3\left(a-b\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a^2+ab+b^2-b^2-bc-c^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a^2+ab-bc-c^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\cdot\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)

14 tháng 5 2017

VP = \(\dfrac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\dfrac{\left(b-c\right)^2}{\left(b+a\right)\left(c+a\right)}+\dfrac{\left(c-a\right)^2}{\left(c+b\right)\left(a+b\right)}\)

\(=\left(a-b\right).\dfrac{\left(a+c\right)-\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}+\left(b-c\right).\dfrac{\left(b+a\right)-\left(c+a\right)}{\left(b+a\right)\left(c+a\right)}+\left(c-b\right).\dfrac{\left(c+b\right)-\left(a+b\right)}{\left(c+b\right)\left(a+b\right)}\)

\(=\left(a-b\right).\left(\dfrac{1}{b+c}-\dfrac{1}{a+c}\right)+\left(b-c\right)\left(\dfrac{1}{c+a}-\dfrac{1}{b+a}\right)+\left(c-a\right).\left(\dfrac{1}{a+b}-\dfrac{1}{c+b}\right)\)

\(=\left(a-b\right).\dfrac{1}{b+c}-\left(a-b\right).\dfrac{1}{a+c}+\left(b-c\right).\dfrac{1}{c+a}-\left(b-c\right).\dfrac{1}{b+a}+\left(c-a\right).\dfrac{1}{a+b}-\left(c-a\right).\dfrac{1}{c+b}\)

\(=\left(2a-b-c\right).\dfrac{1}{b+c}+\left(2b-c-a\right).\dfrac{1}{c+a}+\left(2c-a-b\right).\dfrac{1}{a+b}\)

\(=\dfrac{2a}{b+c}-\left(b+c\right).\dfrac{1}{b+c}+\dfrac{2b}{c+a}-\left(c+a\right).\dfrac{1}{c+a}+\dfrac{2c}{a+b}-\left(a+b\right).\dfrac{1}{a+b}\)

\(=2\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)-3\left(đpcm\right)\)

15 tháng 5 2017

\(VT=\dfrac{2a^3-a^2b-a^2c-ab^2-ac^2+2b^3-b^2c-bc^2+2c^3}{(a+b)(b+c)(c+a)} \)

\(\\=\dfrac{a^3+a^2b-2a^2b-2ab^2+ab^2+b^3+b^3+b^2c-2b^2c-2bc^2+bc^2+c^3+c^3+c^2a-2c^a+2ca^2-ca^2+a^3}{(a+b)(b+c)(c+a)}\)

\(\\=\dfrac{(a-b)^2(a+b)+(b-c)^2(b+c)+(c-a)^2(c+a)}{(a+b)(b+c)(c+a)}\)

\(\\\Rightarrow VT=\dfrac{(a-b)^2}{(c+a)(b+c)}+\dfrac{(b-c)^2}{(c+a)(a+b)}+\dfrac{(c-a)^2}{(a+b)(b+c)}=VP\)

\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-2\right)+c\left(a+b\right)^2\left(a-b\right)\)

\(=\left(b-c\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)

nguồn câu hỏi tương tự

14 tháng 7 2019

Trang 136 trong nâng cao phát triển có viết rồi mình cóp nó vô để mọi người dễ đọc nhé !