Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}\)
\(3x^2-51=-24\)
\(3x^2=27\)
\(x^2=9\)
\(x^2=3^2=\left(-3\right)^2\)
TH1: x=3
TH2: x=-3
=.= hok tốt!!
a: \(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}=24^{2n}\)
\(\Leftrightarrow3x^2-51=24\) hoặc 3x2-51=-24
=>3x2=75 hoặc 3x2=27
=>x2=25 hoặc x2=9
hay \(x\in\left\{5;-5;3;-3\right\}\)
b: =>x-3>=0 và x-8<=0
=>3<=x<=8
\(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}\)
\(\Rightarrow3x^2-51\in\left\{-24;24\right\}\)
+) \(3x^2-51=-24\)
=> 3x2 = -24 + 51
=> 3x2 = 27
=> x2 = 27 : 3
=> x2 = 9 = 32 = (-3)2
=> x \(\in\){-3; 3}.
+) \(3x^2-51=24\)
=> 3x2 = 24 + 51
=> 3x2 = 75
=> x2 = 75 : 3
=> x2 = 25 = 52 = (-5)2
=> x \(\in\){-5; 5}.
Vậy có 4 giá trị của x thỏa mãn.
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
\(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}\)
\(\Leftrightarrow3x^2-51=-24\)
\(\Leftrightarrow3x^2=27\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
(3x2 - 51)2n = (-24)2n
=> \(\orbr{\begin{cases}3x^2-51=-24\\3x^2-51=24\end{cases}=>\orbr{\begin{cases}3x^2=27\\3x^2=75\end{cases}}}\)
=>\(\orbr{\begin{cases}x^2=9\\x^2=25\end{cases}=>}\orbr{\begin{cases}x=3\\x=5\end{cases}}\)