K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

Ta có :\(\left(2x-1\right)^2+\left(3x+2\right)^2-2\left(2x-1\right)\left(3x+2\right)\) \(=\left(3x+2-2x+1\right)^2\) \(=\left(x+3\right)^2\)

Ban giai chi tiết giùm mik nha

11 tháng 9 2018

Bạn có thể thấy 2x-1 là a , 3x+2 là b thì 2.(2x-1)(3x+2)=2ab

nên phương trình trên có thể dùng bình phương 1 tổng 

\(\left(2x-1\right)^2+\left(3x+2\right)^2-2.\left(2x-1\right).\left(3x+2\right)=\left[\left(2x-1\right)-\left(3x+2\right)\right]^2\)

\(=\left(2x-1-3x-2\right)^2=\left(-x-3\right)^2=\left(x+3^2\right)\)

11 tháng 9 2018

cái cuối là  (x+3)2 nhé, không phải (x+32) đâu

14 tháng 1 2022

\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)

\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)

\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)

\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)

\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)

\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)

14 tháng 1 2022

\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)

\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)

\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)

\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)

e sẽ cố gắng !!! 

\(3x-15=2x\left(x-5\right)\)

\(3x-15=2x^2-10x\)

\(3x-15-2x^2+10x=0\)

\(13x-15-2x^2=0\)

\(x\left(13-2x\right)-15=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\13-2x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\-2-2x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\2x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

\(f,x\left(2x-7\right)-4x+14=0\)

\(2x^2-7x-4x+14=0\)

\(2x^2-11x+14=0\)

\(x\left(2x-11\right)=-14\)

\(\Rightarrow\orbr{\begin{cases}x=-14\\2x-11=-14\end{cases}\Rightarrow\orbr{\begin{cases}x=-14\\2x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=-14\\x=-\frac{3}{2}\end{cases}}}\)

14 tháng 7 2018

\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow-2x=15-8=7\)

\(\Leftrightarrow x=\frac{-7}{2}\)

Vậy \(x=\frac{-7}{2}\)

10 tháng 10 2021

tách nhỏ câu hỏi ra

10 tháng 10 2021

1. -3(-x+3)

= 3x - 6

2. -5x3 (-3x + 5)

= 15x4 - 25x3

3. -2x (-2x - 6)

= 4x2 + 12x

 

3 tháng 2 2021

1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)

\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)

3 tháng 2 2021

2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)

\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)

Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)

Vậy x = -2 hoặc x = -4

2 tháng 3 2020

\(\left(3x-5\right)\left(-2x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-5=0\\-2x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=5\\-2x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{-7}{2}\end{cases}}}\)

2 tháng 3 2020

\(9x^2-1=\left(1+3x\right)\left(2x-3\right)\)

\(\Leftrightarrow9x^2-1=2x-3+6x^2-9x\)

\(\Leftrightarrow9x^2-1=-7x-3+6x^2\)

\(\Leftrightarrow9x^2-1+7x+3-6x^2=0\)

\(\Leftrightarrow3x^2+2+7x=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}\)