Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số bậc hai đã cho có a = 2; b = 4; c = -6;
Vì a > 0, ta có bảng biến thiên
Hàm số nghịch biến trên khoảng (-∞; -1) đồng biến trên khoảng (-1; +∞)
Để vẽ đồ thị ta có trục đối xứng là đường thẳng x = -1; đỉnh I(-1;-8); giao với tục tung tại điểm (0;-6); giao với trục hoành tại các điểm (-3;0) và (1;0).
Đồ thị của hàm số y = 2 x 2 + 4 x - 6 được vẽ trên hình 35.
Bảng biến thiên
Hàm số đồng biến trên khoảng ( - ∞ ; 0 ) nghịch biến trên khoảng ( 0 ; + ∞ ) , hàm số là chẵn.
Đỉnh parabol I(0;-2); đồ thị đi qua điểm (1;-4) và điểm (-1;-4).
Đồ thị hàm số y = - 2 ( x 2 + 1 ) được vẽ trên hình 38.
Bảng biến thiên
Hàm số nghịch biến trên khoảng ( - ∞ ; - 1 ) đồng biến trên khoảng ( - 1 ; + ∞ )
Đỉnh parabol ( - 1 ; 2 - 3 )
Đồ thị hàm số được vẽ trên hình 37.
câu này cổ hình như mọi người quan tâm nhiều
f(x) = x^2 -4x +3 =(x-1)(x-3)= (x-2)^2 -1 >=-1
|f(x)| <= 1 khi x [1;3]
cắt trục Ox tại 1, 3
đồ thị
(phác thảo không đúng tỷ lệ)
Ta có thể viết
và đồ thị của hàm số y = x + |x| được vẽ trên hình 34.
a: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)
Bảng biến thiên:
x | -\(\infty\) 5/3 +\(\infty\) |
y | +\(\infty\) 13/3 -\(\infty\) |
b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3
Giá trị nhỏ nhất là y=13/3 khi x=5/3
Bảng biến thiên
Hàm số đồng biến trên khoảng (-∞; -1) nghịch biến trên khoảng (-1; +∞)
Đỉnh parabol I(-1;7). Đồ thị của hàm số y = - 3 x 2 - 6 x + 4 được vẽ trên hình 36.