K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

Chọn B

15 tháng 12 2019

Đáp án B

Gọi ABCD.A'B'C'D' là hình lăng trụ nội tiếp hình trụ. Khi đó lăng trụ đã cho là lăng trụ đứng và có chiều cao là chiều cao h của hình trụ. Vậy thể tích khối lăng trụ đạt giá trị lớn nhất khi và chỉ khi diện tích đáy ABCD đạt giá trị lớn nhất. Do ABCD nội tiếp đường tròn đáy của hình trụ nên ta có:

Dấu bằng xảy ra khi ABCD là hình vuông. Vậy thể tích khối lăng trụ tứ giác nội tiếp hình trụ lớn nhất là V = 2 r 2 h

 

11 tháng 4 2019

Chọn B

19 tháng 1 2017

Chọn A

18 tháng 1 2018

29 tháng 10 2018

Chia đáy của hình lăng trụ đã cho thành năm tam giác cân có chung đỉnh O là tâm đường tròn ngoại tiếp đáy.

Khi đó diện tích đáy bằng: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó thể tích lăng trụ đó bằng: Giải sách bài tập Toán 12 | Giải sbt Toán 12

20 tháng 5 2017

Chia đáy của lăng trụ đã cho thành năm tam giác cân có chung đỉnh O là tâm đường tròn ngoại tiếp đáy. Khi đó diện tích đáy bằng \(\dfrac{5}{2}r^2\sin72^0\). Do đó thể tích lăng trụ đó bằng \(\dfrac{5}{2}hr^2\sin72^0\)

21 tháng 9 2018

Đáp án A

Gọi SH là đường cao hình chóp, a độ dài cạnh đáy và cũng là bán kính đường tròn ngoại tiếp đáy. Lúc đó tâm mặt cầu là I Î SH Þ SH = 1 + IH hoặc SH = 1 – IH.

Đặt IH = x (0 < x < 1) Þ a2 = 1 – x2, đáy hình chóp là ghép của 6 tam giác

 loại khi phải tìm Vmax). 

Có V’ = 0 Û x =  1 3

28 tháng 9 2019