K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 1 2021

Lời giải:

a) Khi $m=1$ thì HPT trở thành:

\(\left\{\begin{matrix} x+y=1\\ x+y=1\end{matrix}\right.\Leftrightarrow x+y=1\Leftrightarrow y=1-x\)

Khi đó, hệ có nghiệm $(x,y)=(a,1-a)$ với $a$ là số thực bất kỳ.

Khi $m=-1$ thì hệ trở thành:

\(\left\{\begin{matrix} x-y=1\\ -x+y=1\end{matrix}\right.\Rightarrow (x-y)+(-x+y)=2\Leftrightarrow 0=2\) (vô lý)

Vậy HPT vô nghiệm

Khi $m=2$ thì hệ trở thành: \(\left\{\begin{matrix} x+2y=1\\ 2x+y=1\end{matrix}\right.\Rightarrow (x+2y)-(2x+y)=1-1=0\Leftrightarrow y-x=0\Leftrightarrow x=y\)

Thay $x=y$ vào 1 trong 2 PT của hệ thì có: $3x=3y=1\Rightarrow x=y=\frac{1}{3}$Vậy........

b) 

PT $(1)\Rightarrow x=1-my$. Thay vào PT $(2)$ có:

$m(1-my)+y=1\Leftrightarrow y(1-m^2)=1-m(*)$

b.1

Để HPT có nghiệm duy nhất thì $(*)$ có nghiệm $y$ duy nhất

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow (1-m)(1+m)\neq 0$

$\Leftrightarrow m\neq \pm 1$

b.2 Để HPT vô nghiệm thì $(*)$ vô nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m\neq 0$

$\Leftrightarrow m=-1$

b.3 Để HPT vô số nghiệm thì $(*)$ vô số nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m=0$

$\Leftrightarrow m=1$

c) Ở b.1 ta có với $m\neq \pm 1$ thì $(*)$ có nghiệm duy nhất $y=\frac{1}{m+1}$

$x=1-my=\frac{1}{m+1}$

Thay vào $x+2y=3$ thì:

$\frac{3}{m+1}=3\Leftrightarrow m=0$

 

10 tháng 8 2018

Để hệ phương trình − m x + y = − 2 m x + m 2 y = 9 nhận cặp (1; 2) làm nghiệm thì − m .1 + 2 = − 2 m 1 + m 2 2 = 9 ⇔ m = − 2 m = ± 2 ⇒ m = − 2

Vậy m = −2

Đáp án: C

a) Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-3y=1\\x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4y=-8\\x+y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=9-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=2\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=7\\y=2\end{matrix}\right.\)

b) Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{1}\ne\dfrac{-m}{1}\)

\(\Leftrightarrow-m\ne1\)

hay \(m\ne-1\)

Vậy: Để hệ phương trình có nghiệm duy nhất thì \(m\ne-1\)

c) Để hệ phương trình có vô số nghiệm thì \(\dfrac{1}{1}=\dfrac{-m}{1}=\dfrac{1}{m^2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}-m=1\\m^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow m=-1\)

Vậy: Để hệ phương trình có vô số nghiệm thì m=-1

29 tháng 12 2022

Bài 1:

- Với \(m=0\) ta có:

\(\left\{{}\begin{matrix}0x+y=3.0-1\\x+0y=0+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy với \(m=0\) hệ đã cho có nghiệm duy nhất.

- Với \(m\ne0\), ta có:

\(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-m^2x-my=-3m^2+m\\x+my=m+1\left(2\right)\end{matrix}\right.\)

\(\Rightarrow\left(1-m^2\right)x=-3m^2+2m+1\left(1\right)\)

- Với \(m=1\). Thế vào (1) ta được:

\(0x=0\) (phương trình vô số nghiệm).

\(\left(2\right)\Rightarrow x+y=2\Leftrightarrow y=2-x\)

- Vậy với \(m=1\) thì hệ đã cho có vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-x\end{matrix}\right.\)

Với \(m=-1\). Thế vào (1) ta được:

\(0x=-4\) (phương trình vô nghiệm)

Vậy với \(m=-1\) thì hệ đã cho vô nghiệm

Với \(m\ne\pm1,0\).

\(\left(1\right)\Leftrightarrow x=\dfrac{-3m^2+2m+1}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{-3m^2+3m-m+1}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{3m\left(1-m\right)+\left(1-m\right)}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{\left(1-m\right)\left(3m+1\right)}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{3m+1}{m+1}\)

Thay vào (2) ta được:

\(\dfrac{3m+1}{m+1}+my=m+1\)

\(\Leftrightarrow3m+1+my\left(m+1\right)=\left(m+1\right)^2\)

\(\Leftrightarrow3m+1+my\left(m+1\right)=m^2+2m+1\)

\(\Leftrightarrow my\left(m+1\right)=m^2-m\)

\(\Leftrightarrow y=\dfrac{m\left(m-1\right)}{m\left(m+1\right)}\)

\(\Leftrightarrow y=\dfrac{m-1}{m+1}\)

Vậy với \(m\ne\pm1\) thì hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{3m+1}{m+1};\dfrac{m-1}{m+1}\right)\).

 

29 tháng 12 2022

Bài 2:

\(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\left(2\right)\\4x-y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4x+4\left(m+1\right)y=-4\\4x-y=-2\left(1\right)\end{matrix}\right.\)

\(\Rightarrow4\left(m+1\right)y-y=-6\)

\(\Leftrightarrow\left(4m+3\right)y=-6\)

\(\Rightarrow y=-\dfrac{6}{4m+3}\)

Để y nguyên thì:

\(6⋮\left(4m+3\right)\)

\(\Rightarrow\left(4m+3\right)\inƯ\left(6\right)\)

\(\Rightarrow4m+3\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)

4m+31236-1-2-3-6
m-1/2 (loại)

-1/4 (loại)

0 (nhận)3/4 (loại)-1 (nhận)-5/4 (loại)-3/2 (loại)-9/4 (loại)

\(\Rightarrow m\in\left\{0;-1\right\}\)

Với \(m=0\) ta có \(y=-\dfrac{6}{4.0+3}=-2\)

Thay vào (1) ta được:

\(4x-\left(-2\right)=-2\Leftrightarrow x=-1\)

Thử lại \(x=-1;y=-2\) cho (2) ta thấy phương trình nghiệm đúng.

Vậy \(\left(x;y\right)=\left(-1;-2\right)\) là 1 nghiệm nguyên của hệ phương trình.

Với \(m=-1\) ta có \(y=-\dfrac{6}{4.\left(-1\right)+3}=6\)

Thay \(y=6\) vào (2) ta được:

\(4x-6=-2\)

\(\Leftrightarrow x=1\)

Thử lại \(x=1;y=6\) cho (2) ta thấy pt nghiệm đúng.

Vậy \(\left(x;y\right)=\left(1;6\right)\) là 1 nghiệm nguyên của hệ phương trình.

4 tháng 3 2023

`{(x+y=3),(-mx-y=2m):}`

`<=>{(x=3-y),(-m(3-y)-y=2m):}`

`<=>{(x=3-y),(my-3m-y=2m):}`

`<=>{(x=3-y),(m(y-1)=5m):}`

Hệ phương có 1 nghiệm

`<=>m\ne0`

Hệ phương trình vô nghiệm(ax=b vô nghiệm khi a=0 và `b\ne0`)

`<=>{(m=0),(m\ne0):}` vô lý

Hệ phương trình có vô số nghiệm(ax=b vô số nghiệm khi a=0 và `b=0`)

`<=>{(m=0),(m=0):}<=>m=0`