K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

Tính chất[sửa | sửa mã nguồn]

Ký hiệu "{\displaystyle b\mid a}{\displaystyle b\mid a}" nghĩa là {\displaystyle b}{\displaystyle b} là ước của {\displaystyle a}{\displaystyle a}.

1. Ước tự nhiên khác {\displaystyle 1}1 nhỏ nhất của một số tự nhiên là số nguyên tố.

Chứng minh: Giả sử {\displaystyle d\mid a}{\displaystyle d\mid a}; {\displaystyle d}{\displaystyle d} nhỏ nhất; {\displaystyle d\neq 1}{\displaystyle d\neq 1}.

Nếu {\displaystyle d}{\displaystyle d} không nguyên tố {\displaystyle \Rightarrow d=d_{1}d_{2};\;d_{1},d_{2}>1.}{\displaystyle \Rightarrow d=d_{1}d_{2};\;d_{1},d_{2}1.}

{\displaystyle \Rightarrow d_{1}\mid a}{\displaystyle \Rightarrow d_{1}\mid a} với {\displaystyle d_{1}<d}{\displaystyle d_{1}d}: mâu thuẫn với {\displaystyle d}{\displaystyle d} nhỏ nhất. Vậy {\displaystyle d}{\displaystyle d} là nguyên tố.

2. Cho {\displaystyle p}p là số nguyên tố; {\displaystyle a\in \mathbb {N} ;a\neq 0}{\displaystyle a\in \mathbb {N} ;a\neq 0}. Khi đó

{\displaystyle (a,p)=p\Leftrightarrow p\mid a}{\displaystyle (a,p)=p\Leftrightarrow p\mid a}

{\displaystyle (a,p)=1\Rightarrow p\mid a}{\displaystyle (a,p)=1\Rightarrow p\mid a}

3. Nếu tích của nhiều số chia hết cho một số nguyên tố {\displaystyle p}p thì có ít nhất một thừa số chia hết cho {\displaystyle p}p.

Hình minh họa cho thấy thuật toán đơn giản để tìm số nguyên tố và các bội số
Các số tô màu giống nhau là cùng một họ mà dẫn đầu (đậm hơn) sẽ là số nguyên tố

{\displaystyle p\mid \prod _{i=1}^{N}a_{i}\Rightarrow (\exists a_{i}\Rightarrow p\mid a_{i})}{\displaystyle p\mid \prod _{i=1}^{N}a_{i}\Rightarrow (\exists a_{i}\Rightarrow p\mid a_{i})}

4. Ước số dương bé nhất khác {\displaystyle 1}1 của một hợp số {\displaystyle a}{\displaystyle a} là một số nguyên tố không vượt quá {\displaystyle {\sqrt {a}}}{\displaystyle {\sqrt {a}}}

5. {\displaystyle 2}{\displaystyle 2} là số nguyên tố nhỏ nhất và cũng là số nguyên tố chẵn duy nhất

6. Tập hợp các số nguyên tố là vô hạn (tương đương với việc không có số nguyên tố lớn nhất).

Chứng minh: Giả sử có hữu hạn số nguyên tố: p1 < p2 <... < pn

Xét a = p1.p2.... pn+1

Ta có: a > 1 và a khác pi với mọi i từ 1 đến n => a là hợp số => a có ước nguyên tố pi hay a chia hết cho pi, mà p1p2...pn chia hết chi pi => 1 chia hết cho pi, mâu thuẫn vì pi là số nguyên tố.

Vậy tập hợp các số nguyên tố là vô hạn.

Bảng số nguyên tố-sàng 

1 tháng 11 2018

Ta có (các số 2,3,5,7)là các số nguyên tố từ 1 đến 10

Vậy các số chia hết cho (2,3,5,7)là số 30 Vì 30 chia hết cho cả 2,3,5,7và cũng là số dương nhỏ nhất chia hết cho (2,3,5,7)

+Đó là cách của mk ko bt sai hay đúng nhé nhưng mk từng gặp dạng này r 

+có lẽ đúng đấy

Bài làm

Số nguyên dương nhỏ nhất chia hết cho 1 đến 10 là: số 1 

31 tháng 10 2018

Bạn Should A person ơi, mình ko giỡn vs bạn nhe

21 tháng 5 2020

số nguyên dương nhỏ nhất chia hết cho tất cả các số nguyên từ 1 đến 7 là bao nhiêu ?

A:840               B:420                C:2520               D:1260

Học tốt 

5 tháng 9 2018

Lời giải:

Có 4 số a,b,c,d và 3 số dư có thể xảy ra khi chia một số cho 3 là 0,1,2

Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [\(\frac{4}{3}\)]+1=2số có cùng số dư khi chia cho 3

Không mất tổng quát giả sử đó là a,b⇒a−b⋮3

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3

Mặt khác

Trong 4 số a,b,c,da,b,c,d

Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b

⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)\(⋮\)4

Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3

⇒c−a⋮2; d−b⋮2

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó nó cũng chia hết cho 12

Ta có đpcm,

24 tháng 8 2015

Vì A nhỏ nhất nên A .3 nhỏ nhất và  A .3 có 2014 chữ số  

Mà A. 3 chia hết cho 3 nên tổng các chữ số  của A.3 chia hết cho 3 . hơn nữa các chữ số của A .3 đều chẵn

=>  A.3 = 4000.... 02 ( Có 2012 chữ số 0) hoặc A.3 = 20000....04  (có 2012 chữ số 0)

Loại A.3 = 2000....04 Vì A = 2000...04 : 3 = 666...8 ( có 2013 chữ số)

=> A = 40000...02 : 3 = 1333....34 ( có 2012 chữ số 3)

Vậy A xuất hiện 2012 lần trong A

24 tháng 3 2017

Gọi \(a\) là số cần tìm

Ta có:

\(a⋮99\Rightarrow a⋮11;9\)

Ta có:

Để \(a⋮11\) thì các chữ số của \(a\) phải lặp đi lặp lại \(\left(1\right)\)

Để  \(a⋮9\) thì các chữ số của \(a⋮9\left(2\right)\) 

Từ \(\left(1\right)\) và \(\left(2\right)\)

\(\Rightarrow a=22...2;44...4;...;66...6;88...8\)

Xét từng trường hợp thì \(a=22....2\) (54 chữ số 2) thì thỏa mãn

Vậy số cần tìm là \(22..2\) (54 chữ só 2

24 tháng 3 2017

gọi a là số cần tìm 

a chia hết 99                            suy ra a chia hết 11.9

ta có a chia hết 11 thì các của a phải lập đi lập lại (1)

để a chia hết 9 thì các chữ số của a chia hết 9 (2)

từ 1 và 2 ta có a=22.......2;44........4;66.........6;88........8

xét từng trường hợp thì a =22...............2(54chuwr số 2)thì thỏa mãn đề bài

vậy số cần tìm là 222.....2 (54 chữ số 2)

nhớ cho mình đúng nheeeees

7 tháng 10 2021

Mình không biết nha tạm thời bạn hỏi bạn khác đi 😅

15 tháng 2 2016

là 2014! chia hết cho 7a chứ đâu pải 2014 chia hết cho 7a, bạn bị nhấm rồi Trần Cao Anh Triết

15 tháng 2 2016

Hình như bài này có vấn đề á bạn
Ta có: 2004 chia hết cho 7a=> 7a thuộc ước của 2004
Mà: ước của 2004 = {1;2;3;167;12;668;1002; 2004;6;334;501;4} (ko kể ước âm vì a thuộc n*)
Thử tất cả các ước trên => Ko tồn tại số a nào thỏa mãn cả^^