K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : 

\(n^2 - 1 = (n-1)(n+1)\)

\(n \) là nguyên tố lớn hơn \(3 \implies n-1;n+1\) là hai số chẵn liên tiếp 

\(=> (n-1)(n+1) \) chia hết cho \(8\)    \((1)\)

Vì \(n \) là nguyên tố lớn hơn 3 nên ta có : \(n = 3k +1 ; 3k +2\) \((2)\)

Với \(n= 3k + 1\)

\(=> (n-1)(n+1) = (3k+1-1)(n+1) = 3k(n+1) \) chia hết cho 3 

Với \(n = 3k+2\)

\(=> (n-1)(n+1) = (n-1)(3k+2+1) = (n-1)(k+1)3 \) chi hết cho 3

- Từ \((1) \),\((2)\) ta thấy \((n-1)(n+1) = n^2 -1\) chia hết cho cả \(8;3\)

\(=> n^2 - 1 \) chia hết cho \(24 (đpcm)\)

Với p là số nguyên tố lớn hơn 3 thì p không chia hết cho 3

 \(\Rightarrow\)p có dạng 3k+1 và 3k+2

+) Với p=3k+1

Khi đó: 2p+7 = 2(3k+1)+7 = 6k+2+7 = 6k+9

Mà 6k+9 > 3 nên 6k+9 chia hết cho 3 hay 2p+7 là hợp số ( không thỏa mãn yêu cầu đề bài )

+) Với p=3k+2

Khi đó: 2p+7 = 2(3k+2)+7 = 6k+4+7 = 6k+11 - Là số nguyên tố ( thỏa mãn )

             4p+7 = 4(3k+2)+7 = 12k+8+7 = 12k+15

Mà 12k+15 > 3 nên 12k+15 chia hết cho 3 hay 4p+7 là hợp số ( thỏa mãn )

Vậy ...

_HT_

3 tháng 2 2022

em chịu

30 tháng 1 2016

de thoi bang 356

30 tháng 1 2016

Ta có:

       2n+1 chia hết cho n-3

<=> 2n+1-6+6 chia hết cho n-3

<=> 2n-6+7 chia hết cho n-3

Vì 2n-6 chia hết cho n-3 mà 2n-6+7 chia hết cho n-3 => 7 chia hết cho n-3

=>n-3 thuộc Ư(7)={-1;1;-7;7}

Nếu n-3=-1 =>n=2(t/m)

Nếu n-3=1 =>n=4(t/m)

Nếu n-3=-7 =>n=-4(t/m)

Nếu n-3=7 =>n=10(t/m)

Vậy n= -4;2;4;10

15 tháng 11 2021

Đặt A = n^2019 - n^2016 + n^2013 - ... + n^3 - 1
A = n^2016( n^3 - 1 ) + ... + (n^3 - 1)
A = (n^2016 + n^2010 + ... + 1)(n^3 - 1) chia hết cho n^3 - 1

Đặt B = n^2016 - n^2013 + ... - n^3
B = n^2013( n^3 - 1 ) + ... + n^3( n^3 - 1 )
B = (n^2013 + n^2007 + ... + n^3)(n^3 - 1) chia hết cho n^3 - 1
Suy ra A + B chia hết cho n^3 - 1
Lại có A + B = n^2019 -1 nên n^2019 -1 chia hết cho n^3 - 1

15 tháng 11 2021
Bạn nhìn nhầm đề rồi kẻ bí ẩn
17 tháng 9 2015

A=8n+1111....1111

A=8n+1(tích n thừa số 1=1)

đến đay thôi

17 tháng 12 2021
S có chia hết cho 3 bạn nhé
3 tháng 3 2022

Thế S là số nào bn mà chia hết cho 3 vậy bn ?

28 tháng 11 2015

n2 + n  + 1 = n(n+1) + 1

Ta có n(n+1) là tích của 2 số tự nhiên liên tiếp

Nên n(n+1) không có tận cùng là 4 hoặc 9 

=> n(N+1) + 1 không có ận cùng là 5 hoặc 0 

Vậy n2 + n + 1 không chia hết cho 15 (dpcm)