Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)+\frac{1}{9.10}\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)+\frac{1}{90}\)
\(=-\left(1-\frac{1}{10}\right)+\frac{1}{90}\)
\(=-\frac{9}{10}+\frac{1}{90}\)
= ...
bn tự tính nha!
A = \(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)
=> 4A = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)
=> 3A = \(1-\frac{1}{4^{2012}}\)
=> A = \(\frac{1-\frac{1}{4^{2012}}}{3}\)
Vậy A \(< \frac{1}{3}\)
\(B=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\)
\(B=\frac{1}{3}-\frac{1}{10}\)
\(B=\frac{7}{30}\)
\(B=\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}-\frac{1}{8.9}-\frac{1}{9.10}\)
\(\Rightarrow B=\frac{1}{3.4}-\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(\Rightarrow B=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow B=\frac{1}{3}-\frac{1}{4}-\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(\Rightarrow B=\frac{1}{12}-\frac{6}{40}\)
\(\Rightarrow B=\frac{-1}{15}\)
1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab
=>(a+b/)2ab-1/h=0
quy dong len ta co
(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0
=>ah+bh-ab-ab=0
=>a(h-b)-b(a-h)=0
=>a(h-b)=b(a-h)
=>a/b=(a-h)(h-b)
bị nhầm xíu sửa lại
\(\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-...-\frac{1}{2.3}-\frac{1}{1.2}=\frac{1}{9}-\frac{1}{10}-\frac{1}{8}+\frac{1}{9}-\frac{1}{7}+\frac{1}{8}-...-\frac{1}{2}+\frac{1}{3}-\frac{1}{1}+\frac{1}{2}\)
\(=\frac{2}{9}-\frac{1}{10}-\frac{1}{1}=\frac{20}{90}-\frac{9}{90}-\frac{90}{90}=-\frac{79}{90}\)