K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S_{Xq}=2\cdot pi\cdot2^2+\dfrac{1}{2}\cdot\sqrt{5}\cdot2=3\sqrt{5}\cdot pi\)

R=1/2CD=a

h=AD=2a

S1=Sxq=2*pi*r*h=2*pi*a*2a=4*pi*a^2

S2=Stp=2*pi*r^2+2*pi*r*h

=2*pi*a^2+2*pi*a*2a

=6*pi*a^2

>S1/S2=2/3

a: =>x=y+11

xy=60

=>y(y+11)=60

\(\Leftrightarrow y^2+15y-4y-60=0\)

=>(y+15)(y-4)=0

hay \(y\in\left\{-15;4\right\}\)

10: =>1/2x=3/4 và x+y=2

=>x=3/4*2=3/2 và y=1/2

11:=>4x+5y=3 và 4x-12y=20

=>17y=-17 và x-3y=5

=>y=-1 và x=3y+5=-3+5=2

12: =>7x-2y=1 và 6x+2y=12

=>13x=13 và 3x+y=6

=>x=1 và y=3

13:=>2/x=1 và 1/x-1/y=1/5

=>x=2 và 1/y=1/2-1/5=3/10

=>y=10/3 và x=2

14: =>12/x-16/y=8 và 12/x-15/y=9

=>-1/y=-1 và 4/x-5/y=3

=>y=1 và 4/x=3+5=8

=>x=1/2 và y=1

a: Khi m=3 thì (1): x^2-6x+4=0

=>x^2-6x+9-5=0

=>(x-3)^2=5

=>\(x=3\pm\sqrt{5}\)

a: Δ=(m-2)^2-4(m-4)

=m^2-4m+4-4m+16

=m^2-8m+20

=m^2-8m+16+4

=(m-2)^2+4>=4>0

=>Phương trình luôn có 2 nghiệm pb

b: x1^2+x2^2

=(x1+x2)^2-2x1x2

=(m-2)^2-2(m-4)

=m^2-4m+4-2m+8

=m^2-6m+12

=(m-3)^2+3>=3

Dấu = xảy ra khi m=3

a: góc CAO+góc CMO=180 độ

=>CAOM nội tiếp

b: Xét (O) có

CA,CM là tiếp tuyến

=>CA=CM và OC là phân giác của góc MOA(1)

Xét (O) co

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

CD=CM+MD=CA+DB

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

c: AC*BD=CM*MD=OM^2=R^2

\(cosAOB=\dfrac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}\)

=>\(2R^2-AB^2=2\cdot R^2\cdot\dfrac{\sqrt{3}}{2}=R^2\cdot\sqrt{3}\)

=>\(AB^2=R^2\cdot\left(2-\sqrt{3}\right)\)

=>\(AB=R\sqrt{2-\sqrt{3}}=\dfrac{R}{\sqrt{2}}\cdot\left(\sqrt{3}-1\right)\)

\(AC=\sqrt{R^2+R^2}=R\sqrt{2}\)

góc OBA=(180-30)/2=75 độ

góc BOC=90+30=120 độ

góc OCA=45 độ

=>góc BAC=360-120-75-45=240-120=120 độ

\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(\dfrac{\dfrac{R^2}{2}\cdot\left(4-2\sqrt{3}\right)+2R^2-BC^2}{2\cdot\dfrac{R}{\sqrt{2}}\cdot\left(\sqrt{3}-1\right)\cdot R\sqrt{2}}=\dfrac{-1}{2}\)

=>\(R^2\left(2-\sqrt{3}\right)+2R^2-BC^2=-\dfrac{R}{\sqrt{2}}\cdot\left(\sqrt{3}-1\right)\cdot R\sqrt{2}\)

\(\Leftrightarrow R^2\left(4-\sqrt{3}\right)-BC^2=-2R^2\left(\sqrt{3}-1\right)\)

\(\Leftrightarrow R^2\left(4-\sqrt{3}+2\sqrt{3}-2\right)-BC^2=0\)

=>\(BC^2=R^2\cdot\left(2+\sqrt{3}\right)\)

=>\(BC=R\sqrt{2+\sqrt{3}}\)

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot sin120\cdot\dfrac{R}{\sqrt{2}}\left(\sqrt{3}-1\right)\cdot R\sqrt{2}\)

\(=\dfrac{1}{2}\cdot R^2\cdot\dfrac{\sqrt{3}}{2}\cdot\left(\sqrt{3}-1\right)=R^2\cdot\dfrac{3-\sqrt{3}}{4}\)

 

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

=>ΔAMB vuông tại M

=>AM vuông góc MB

=>AM vuông góc DC tại K

M là điểm chính giữa của cung AC

nên MA=MC

mà OA=OC

nen OM là trung trực của AC

=>OM vuông góc AC
Xét tứ giác CHMK có

góc CHM+góc CKM=180 độ

=>CHMK là tứ giác nội tiếp

b: Xét tứ giác DMBC có

DC//BM

DM//CB

=>DMBC là hình bình hành

=>DC=MB; DM=BC