Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3-\frac{x}{5}-x=\frac{x}{x-1}\)
\(\Rightarrow\frac{15\left(x-1\right)}{5\left(x-1\right)}-\frac{x\left(x-1\right)}{5\left(x-1\right)}-\frac{5x\left(x-1\right)}{5\left(x-1\right)}=\frac{5x}{5\left(x-1\right)}\)
\(\Rightarrow15\left(x+1\right)-x\left(x-1\right)-5x\left(x-1\right)=5x\)
\(\Rightarrow15x+15-x^2+x-5x^2+5x=5x\)
Bạn tự làm tiếp theo ha
\(\frac{3-x}{5-x}=\frac{x}{x+1}\)
\(\left(3-x\right)\left(x+1\right)=\left(5-x\right)x\)
\(3\left(x+1\right)-x\left(x+1\right)=5x-x^2\)
\(3x+3-x^2-x=5x-x^2\)
\(2x+3-x^2=5x-x^2\)
\(2x+3=5x\)
\(3=5x-2x\)
\(3x=3\)
\(x=1\)
Vậy x = 1
\(\left(x-1\right)^2+\left|x^2-1\right|=0.\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left|x^2-1\right|\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2-1=0\end{cases}\Rightarrow x=1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)
Do đó: x=5; y=5; z=17