Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/b=c/d=k => a=bk,c=dk
Ta có: \(\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)
\(\frac{7a+5c}{7b+5d}=\frac{7bk+5dk}{7b+5d}=\frac{k\left(7b+5d\right)}{7b+5d}=k\left(2\right)\)
Từ (1) vavf (2) => a/b=7a+5c/7b+5d
Mik cũng mún giúp bạn lắm nhưng mà mik kém toán ( mik suy nghĩ rồi mà nó ko ra dc chữ nào bạn ạ)
Khi nào bạn hỏi về môn Văn hoặc Anh thì mik sẽ giúp bạn...
1/ Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow bz-cy=cx-az=ay-bx=0\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
2/ Giả sử \(a>b\Rightarrow\frac{a}{b}>1\)
Ta sẽ chứng minh \(\frac{a}{b}>\frac{a+2017}{b+2017}\) . Thật vậy : \(\frac{a}{b}>\frac{a+2017}{b+2017}\Leftrightarrow ab+2017a>ab+2017b\Leftrightarrow a>b\) luôn đúng
Giả sử \(a< b\) thì \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+2017}{b+2017}\) . Thật vậy :
\(\frac{a}{b}< \frac{a+2017}{b+2017}\Rightarrow ab+2017a< ab+2017b\Leftrightarrow a< b\) luôn đúng
Giả sử \(a=b\Leftrightarrow\frac{a}{b}=1=\frac{2017}{2017}=\frac{a+2017}{b+2017}\)
hình bạn tự vẽ nhé
a. ví tam giác ABC là tam giác cân và có góc A bằng 90 độ nên tam giác ABC là tam giác vuông cân tại A
=> góc BAC = 90 độ và AB=AC
Xét tứ giác ABIC có góc BAC =90 độ, góc ABI = 90 độ (vì AIvuông góc với AB ), góc ACI =90độ (vì AC vuông góc với CI)
=> tứ giác ABIC là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
mà AB=AC (cmt)
=> Tứ giác ABIC là hình vuông (dấu hiệu nhận biết hình vuông)
=> AI là phân giác góc BAC
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}.\left(1+5\right)}{6^{12}-6^{11}}=\frac{2^{12}.3^{10}.6}{6^{11}.\left(6-1\right)}=\frac{2^{12}.3^{10}.2.3}{6^{11}.\left(6-1\right)}=\frac{2^{13}.3^{11}}{6^{11}.5}=\frac{2^{11}.3^{11}.2^2}{6^{11}.5}=\frac{6^{11}.4}{6^{11}.5}=\frac{4}{5}\)
Bài2
a) ta có : 10^19 + 10^18 +10^17 = 10^17 (10^2+10+1)
= 10^17 . 111
Do 10 chia hết cho 5 nên 10^17 cũng chia hết cho 5. Mà 10^17 cũng chia hết cho 111
nên 10^17 chia hết cho 111x5 = 555 ( vì (111;5)=1)
Vậy 10^19 + 10^18 + 10^17 chia hết cho 555
b) Ta có : 7+7^2+7^3+7^4+...+7^84
= (7+7^2+7^3)+(7^4+7^5+7^6)+...+(7^82+7^83+7^84)
= 7(1+7+7^2) + 7^4(1+7+7^2)+...+7^82(1+7+7^2)
= 7.57 + 7^4.57 +...+ 7^82.57
= 57(7.7^4....7^82) chia hết cho 57
Vậy 7+7^2+7^3+...+7^84 chia hết cho 57