K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

a. Áp dụng công thức L'Hospital:

\(\lim\limits_{x\to 0}\frac{\sqrt{x+1}-\sqrt{1-x}}{\sqrt[3]{x+1}-\sqrt{1-x}}=\lim\limits_{x\to 0}\frac{\frac{1}{2}(x+1)^{\frac{-1}{2}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}{\frac{1}{3}(x+1)^{\frac{-2}{3}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}=\frac{1}{\frac{5}{6}}=\frac{6}{5}\)

b.

\(\lim\limits_{x\to 0}(\frac{1}{x}-\frac{1}{x^2})=\lim\limits_{x\to 0}\frac{x-1}{x^2}=-\infty\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

c. Áp dụng quy tắc L'Hospital:

\(\lim\limits_{x\to +\infty}\frac{x^4-x^3+11}{2x-7}=\lim\limits_{x\to +\infty}\frac{4x^3-3x^2}{2}=+\infty \)

d.

\(\lim\limits_{x\to 5}\frac{7}{(x-1)^2}.\frac{2x+1}{2x-3}=\frac{7}{(5-1)^2}.\frac{2.5+11}{2.5-3}=\frac{11}{16}\)

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là : A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0 Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là : A. 1 B. 0 C. 3 D. \(+\infty\) Câu 3 : Biết rằng lim \(\left(\frac{\left(\sqrt{5}\right)^n-2^{n+1}+1}{5.2^n+\left(\sqrt{5}\right)^{n+1}-3}+\frac{2n^2+3}{n^2-1}\right)=\frac{a\sqrt{5}}{b}+c\) với a , b , c \(\in\) Z . Tính giá trị của biểu thức S = a2...
Đọc tiếp

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là :

A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0

Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là :

A. 1 B. 0 C. 3 D. \(+\infty\)

Câu 3 : Biết rằng lim \(\left(\frac{\left(\sqrt{5}\right)^n-2^{n+1}+1}{5.2^n+\left(\sqrt{5}\right)^{n+1}-3}+\frac{2n^2+3}{n^2-1}\right)=\frac{a\sqrt{5}}{b}+c\) với a , b , c \(\in\) Z . Tính giá trị của biểu thức S = a2 + b2 + c2

A. S = 26 B. S = 30 C. S = 21 D. S = 31

Câu 4 : Cho un = \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\) thì lim \(\left(u_n-\frac{1}{2}\right)\) bằng

A. 0 B. -1 C. 1 D. \(\frac{1}{2}\)

Câu 5 : Tìm giá trị thực của tham số m để hàm số y = f (x ) = \(\left\{{}\begin{matrix}\frac{x^2-x-2}{x-2}khix\ne2\\mkhix=2\end{matrix}\right.\) liên tục tại x = 2

A. m = 3 B. m = 1 C. m = 2 D. m = 0

Câu 6 : Cho hàm số f(x) = \(\left\{{}\begin{matrix}\frac{x^2+4x+3}{x+3},khix>-3\\2a,khix\le-3\end{matrix}\right.\) . giá trị của để f ( x ) liên tục tại x0 = -3 là

A. 1 .B. 2 C. -1 D. -2

Câu 7 : Hàm số y = f (x) = \(\frac{x^3+xcosx+sinx}{2sinx+3}\) liên tục trên

A. [-1;1] B. [1;5] C. \(\left(-\frac{3}{2};+\infty\right)\) D. R

Câu 8 : Kết quả của giới hạn \(lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\) là :

A. \(+\infty\) B. \(-\infty\) C. 0 D. \(\frac{5}{6}\)

Câu 9 : Với a là số thực khác 0 , \(lim_{x\rightarrow a}\frac{x^2-\left(a+1\right)x+a}{x^2-a^2}\) bằng :

A. a - 1 B. a + 1 C. \(\frac{a-1}{2a}\) D. \(\frac{a+1}{2a}\)

Câu 10 : giá trị của \(lim_{x\rightarrow+\infty}\frac{\sqrt{2+2x}-\sqrt{2x^2+2}}{2x}\) bằng

A. \(-\infty\) B. \(\sqrt{2}-\sqrt{3}\) C. \(+\infty\) D. \(-\sqrt{3}\)

Câu 11 : Kết quả của giới hạn \(lim_{x\rightarrow1^+}\frac{-2x+1}{x-1}\)là :

A. \(\frac{2}{3}\) B. \(-\infty\) C. \(\frac{1}{3}\) D. \(+\infty\)

Câu 12 : Đạo hàm của hàm số y = cot x là hàm số :

A. \(\frac{1}{sin^2x}\) B. \(-\frac{1}{sin^2x}\) C. \(\frac{1}{cos^2x}\) D. \(-\frac{1}{cos^2x}\)

Câu 13 : Đạo hàm của hàm số y = \(\left(x^3-2x^2\right)^{2020}\) là :

A. y' = \(2020\left(x^3-2x^2\right)^{2021}\)

B. y' = \(2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

C. y' = \(2019\left(x^3-2x^2\right)^{2020}\left(3x^2-4x\right)\)

D. y' = \(2019\left(x^3-2x^2\right)\left(3x^2-2x\right)\)

Câu 14 : Đạo hàm của hàm số y = \(\sqrt{4x^2+3x+1}\) là hàm số nào sau đây ?

A. y = \(\frac{1}{2\sqrt{4x^2+3x+1}}\)

B. y = \(\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

C. y = 12x + 3

D. y = \(\frac{8x+3}{\sqrt{4x^2+3x+1}}\)

Câu 15 : Tính đạo hàm của hàm số y = (x - 5)4

A. y' = ( x - 5 )3 B. y' = -20 (x-5)3 C. y' = -5(x-5)3 D. y' = 4(x-5)3

Câu 16 : Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\)

A. \(y^'=-\frac{sin2x}{2\sqrt{cos2x}}\)

B. y' = \(\frac{sin2x}{\sqrt{cos2x}}\)

C. y' = \(\frac{sin2x}{2\sqrt{cos2x}}\)

D. y' = \(-\frac{sin2x}{\sqrt{cos2x}}\)

Câu 17 : Đạo hàm của hàm số y = \(x^4+\frac{1}{x}-\sqrt{x}\) là :

A. y' = \(4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

B. y' = \(4x^3+\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

C. y' = \(4x^3+\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

D. y' = \(4x^3-\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

Câu 18 : Tiếp tuyến với đồ thị y = x3 - x2 tại điểm có hoành độ x0 = -2 có phương trình là :

A. y = 20x + 14 B. y = 20x + 24 C. y = 16x + 20 D. y = 16x - 56

Câu 19 : Tính đạo hàm cấp hai của hàm số y = \(\frac{1}{x}\)

A. y'' = \(-\frac{2}{x^3}\)

B. y'' = \(-\frac{1}{x^2}\)

C. y'' = \(\frac{1}{x^2}\)

D. y'' = \(\frac{2}{x^3}\)

Câu 20 : Hàm số y = cot x có đạo hàm là :

A. \(y^'=-\frac{1}{sin^2x}\)

B. y' = - tan x

C. y' = \(-\frac{1}{cos^2x}\)

D. y' = 1 + cot2x

Câu 21 : Hàm số y = \(x-\frac{4}{x}\) có đạo hàm bằng

A. \(\frac{-x^2+4}{x^2}\)

B. \(\frac{x^2+4}{x^2}\)

C. \(\frac{-x^2-4}{x^2}\)

D. \(\frac{x^2-4}{x^2}\)

Câu 22 : Trong các dãy số (un) sau , dãy số nào có giới hạn bằng \(+\infty\) ?

A. \(u_n=\frac{1}{n}\)

B. \(u_n=\left(\frac{2}{3}\right)^n\)

C. \(u_n=\left(-\frac{1}{2}\right)^n\)

D. \(u_n=3^n\)

5
NV
10 tháng 6 2020

16.

\(y'=\frac{\left(cos2x\right)'}{2\sqrt{cos2x}}=\frac{-2sin2x}{2\sqrt{cos2x}}=-\frac{sin2x}{\sqrt{cos2x}}\)

17.

\(y'=4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

18.

\(y'=3x^2-2x\)

\(y'\left(-2\right)=16;y\left(-2\right)=-12\)

Pttt: \(y=16\left(x+2\right)-12\Leftrightarrow y=16x+20\)

19.

\(y'=-\frac{1}{x^2}=-x^{-2}\)

\(y''=2x^{-3}=\frac{2}{x^3}\)

20.

\(\left(cotx\right)'=-\frac{1}{sin^2x}\)

21.

\(y'=1+\frac{4}{x^2}=\frac{x^2+4}{x^2}\)

22.

\(lim\left(3^n\right)=+\infty\)

NV
10 tháng 6 2020

11.

\(\lim\limits_{x\rightarrow1^+}\frac{-2x+1}{x-1}=\frac{-1}{0}=-\infty\)

12.

\(y=cotx\Rightarrow y'=-\frac{1}{sin^2x}\)

13.

\(y'=2020\left(x^3-2x^2\right)^{2019}.\left(x^3-2x^2\right)'=2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

14.

\(y'=\frac{\left(4x^2+3x+1\right)'}{2\sqrt{4x^2+3x+1}}=\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

15.

\(y'=4\left(x-5\right)^3\)

8 tháng 4 2021

a/ \(y'=\dfrac{\left(x^3+2\sqrt{x-1}\right)'\left(x-1\right)-\left(x-1\right)'\left(x^3+2\sqrt{x-1}\right)}{\left(x-1\right)^2}\)

\(y'=\dfrac{\left(2x^2+\dfrac{1}{\sqrt{x-1}}\right)\left(x-1\right)-x^3-2\sqrt{x-1}}{\left(x-1\right)^2}=\dfrac{x^3-2x^2-\sqrt{x-1}}{\left(x-1\right)^2}\)

b/ \(y'=\dfrac{\left(4x^3+2x-3\right)'\left(\sqrt{x^2+2}\right)-\left(\sqrt{x^2+2}\right)'\left(4x^3+2x-3\right)}{x^2+2}\)

\(y'=\dfrac{\left(12x^2+2\right)\sqrt{x^2+2}-\dfrac{x}{\sqrt{x^2+2}}\left(4x^3+2x-3\right)}{x^2+2}\) (ban tu rut gon nhe)

c/ \(y'=\dfrac{\left(x^3+x+1\right)'\left(x^3+x+1\right)}{\left|x^3+x+1\right|}=\dfrac{\left(3x^2+1\right)\left(x^3+x+1\right)}{\left|x^3+x+1\right|}\) 

d/ \(y'=\dfrac{3x^2-24x^3}{2\sqrt{x^3-6x^4+7}}\)

e/ \(y'=\dfrac{\left(x^5+1\right)'\left(2-\sqrt{x^2+3}\right)-\left(x^5+1\right)\left(2-\sqrt{x^2+3}\right)'}{\left(2-\sqrt{x^2+3}\right)^2}\)

\(y'=\dfrac{5x^4\left(2-\sqrt{x^2+3}\right)+\left(x^5+1\right)\dfrac{x}{\sqrt{x^2+3}}}{\left(2-\sqrt{x^2+3}\right)^2}\)

28 tháng 2 2020
https://i.imgur.com/v6W1QWU.jpg
28 tháng 2 2020

ai giup voi

NV
1 tháng 3 2020

\(a=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}{\left(x-1\right)\left(x^2+x-1\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x+1\right)\left(x^2+1\right)}{x^2+x-1}=\frac{4}{1}=4\)

\(b=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{x^4-x^3+x^2-x+1}{x^2-x+1}=\frac{5}{3}\)

\(c=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(x-3\right)^2}{\left(x^2+1\right)\left(x^2-9\right)}=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x+3\right)}=\frac{0}{60}=0\)

\(d=\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{x^2-2x+1}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2x-2}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=10\)

\(e=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)

\(f=\lim\limits_{x\rightarrow-2}\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x+2\right)x^2}=\lim\limits_{x\rightarrow-2}\frac{\left(x-2\right)\left(x^2+4\right)}{x^2}=-8\)

Hai câu d, e khai triển thì dài quá nên làm biếng sử dụng L'Hopital