Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
B= 2000/2001+2002 + 2001/2001+2002.
Mà 2000/2001+2002 < 2000/2001 và 2001/2001+2002 < 2001/2002.
Nên 2000/2001+2002 + 2001/ 2001+2002 < 2000/2001 + 2001/2002.
Hay 2000+2001/ 2001+2002 < 2000/2001 + 2001/2002
Suy ra B < A
Ta có : 2000/2001 > 2000/ 2001 + 2002 (1)
2001/2002 > 2001/2001+2002(2)
Cộng các bất đẳng thức (1) và (2) vế với nhau:
Vậy 2000/2001 + 2001/2002> 2000/2001+2002 hay A > B
\(\dfrac{2001+2002}{2002+2003}< \dfrac{2001}{2002}+\dfrac{2002}{2003}\)
đề lạ zậy ko so sánh mà bảo so sánh!!!!!!! chả hỉu *_*!
765885
ta có:\(A=\frac{2000}{2001}+\frac{2001}{2002}<\frac{2000}{2002}+\frac{2001}{2002}=\frac{2000+2001}{2002}<\frac{2000+2001}{2001+2002}=B\)
\(\Rightarrow A
ta có:\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
vì \(\frac{2000}{2001}>\frac{2000}{2001+2002}và\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000+2001}{2001+2002}\)
=>A>B
Ta có:
\(\frac{2000}{2001}\)> \(\frac{2000}{2001+2002}\)(1)
\(\frac{2001}{2002}\)> \(\frac{2001}{2001+2002}\)(2)
Cộng các bất đẳng thức (1) và ( 2) vế với nhau:
Vậy \(\frac{2000}{2001}\)+ \(\frac{2001}{2002}\)> \(\frac{2000+2001}{2001+2002}\)hay A > B.
Ta có \(\frac{2000}{2001}=1-\frac{1}{2001}\)
\(\frac{2001}{2002}=1-\frac{1}{2002}\)
Vì \(\frac{1}{2001}>\frac{1}{2002}\)
=> \(1-\frac{1}{2001}< 1-\frac{1}{2002}\)
=> \(\frac{2000}{2001}< \frac{2001}{2002}\)
ta thấy \(1=\frac{2000}{2001}+\frac{1}{2001}\)
\(1=\frac{2001}{2002}+\frac{1}{2002}\)
mà \(\frac{1}{2001}\) \(>\frac{1}{2002}\) ( phần bù )
\(\frac{\Rightarrow2000}{2001}< \frac{2001}{2002}\)