Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(a=5+2\sqrt{6}\).ta sẽ chứng minh với dạng tổng quát \(\left[a^n\right]\)là 1 số tự nhiên lẻ.
ta có: \(a^n=\left(5+2\sqrt{6}\right)^n=x+y\sqrt{6}\)(x,y là các số tự nhiên) (*)
đặt \(b=5-2\sqrt{6}\Rightarrow b^n=x-y\sqrt{6}\)
\(\Rightarrow a^n+b^n=2x\)
mà \(0< b=5-2\sqrt{6}< 1\)
\(\Rightarrow0< b^n< 1\)
\(\Rightarrow2x-1< a^n=2x-b^n< 2x\)
nên \(\left[a^n\right]=2x-1\)lẻ vì x nguyên.
p/s:(*) : thử \(\left(5+2\sqrt{6}\right)^2,\left(5+2\sqrt{6}\right)^3\)đều có dạng \(A+B\sqrt{6}\)
Theo công thức Heron ta có :
\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) \(\) (\(p\)=\(\frac{a+b+c}{2}=\frac{P}{2}\))
=>\(S^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right).\)
=>\(16S^2=\left(2.p\right)\left[2\left(p-a\right)\right]\left[2\left(p-b\right)\right]\left[2\left(p-c\right)\right].\)
<=>\(16S^2=P.\left(P-2a\right)\left(P-2b\right)\left(P-2c\right).\left(đpcm\right)\)
+) cách chứng minh định lý Heron
Gọi a,b,c lần lượt là 3 cạnh của tam giác và A,B,C lần lượt là các góc đối diện của các cạnh .theo hệ quả định lí cô-si ta có
\(\cos\left(C\right)=\frac{a^2+b^2-c^2}{2ab}=>\sin\left(C\right)=\sqrt{1-\cos^2}=\frac{\sqrt{4a^2b^2-\left(a^2+b^2-c^2\right)^2}}{2ab}\)
ta có diện tích tam giác ABC
\(S=\frac{ab\sin\left(C\right)}{2}=\frac{1}{4}\sqrt{4a^2b^2\left(a^2+b^2-c^2\right)^2}\)
\(=\frac{1}{4}\left(2ab-\left(a^2+b^2-c^2\right)\right)\left(2ab+\left(a^2+b^2-c^2\right)\right)\)
\(=\frac{1}{4}\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)
\(=\frac{1}{4}\left(c-\left(a-b\right)\right)\left(c+\left(a-b\right)\right)\left(\left(a+b\right)-c\right)\left(\left(a+b\right)+c\right)\)
\(=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
thực chất phải ghi là : \(\mu_n\) mới đúng nha . \(\mu_n\)là hệ số ma sát nghỉ của 1 vật nào đó , đọc là " my nghỉ " .
Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa CHƠI vừa KIẾM TIỀN được không?
BÀI TẬP KHÓ?
CÓ ALFAZI
Năm học mới rồi, các bạn bè có anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đó
Truy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!
Đặc biệt, khi bạn tham gia giải đáp bài tập, bạn sẽ nhận được “phụ cấp” siêu khủng từ Web!
Một web học tập rất thân thiện, môi trường học tập cực tốt, Các bạn đừng bỏ phí cơ hội này nhé!
Web rất hân hạnh được đón tiếp những tài năng tương lai của đất nước!
❤️❤️😘😘😘Love you💋💋
TRUY CẬP HTTPS://ALFAZI.EDU.VN ĐỂ NHẬN 20.000 SAU KHI ĐĂNG KÍ!
µm = Micrômét