K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

Ta có : 

\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\)

\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)

\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\right)\)

\(S=1-\frac{1}{2^{2018}}\)

\(S=\frac{2^{2018}-1}{2^{2018}}\)

Vậy \(S=\frac{2^{2018}-1}{2^{2018}}\)

Chúc bạn học tốt ~ 

24 tháng 9 2017

a)\(A=1+3+3^2+...+3^{2018}\)

\(\Rightarrow3A=3.\left(1+3+3^2+...+3^{2018}\right)\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2019}\)

\(\Rightarrow3A-A=3+3^2+3^3+...+3^{2019}-\left(1+3+3^2+...+3^{2018}\right)\)

\(\Rightarrow2A=3^{2019}-1\)

\(\Rightarrow A=\frac{3^{2019}-1}{2}\)

b) \(B=5+5^2+...+5^{2017}\)

\(\Rightarrow5B=5^2+5^3+...+5^{2018}\)

\(\Rightarrow5B-B=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)

\(\Rightarrow4B=5^{2018}-5\)

\(\Rightarrow B=\frac{5^{2018}-5}{4}\)

24 tháng 9 2017

a,A=1+3+32+...+32017

3A=3+32+33+...+32018

3A-A=32018-1

2A=32018-1

A=(32018-1):2

9 tháng 10 2018

\(S=2^{2019}-2^{2018}-2^{2017}-...-2^2-2-1\)

   \(=2^{2019}-\left(1+2+2^2+...+2^{2017}+2^{2018}\right)\) (1)

Đặt \(Q=1+2+2^2+...+2^{2017}+2^{2018}\)

\(2Q=2+2^2+2^3+...+2^{2018}+2^{2019}\)

\(2Q-Q=2^{2019}-1\)

\(Q=2^{2019}-1\)(2) 

Từ (1) và (2), ta được:

\(S=2^{2019}-\left(2^{2019}-1\right)=1\)

     

bạn viết lại đề đc ko bạn:>,ko hỉu đề

23 tháng 2 2022

????????????????????????????????????????????????????????????????????????????????????????????????????????????

21 tháng 6 2019

#)Giải :

\(S=3+3^2+3^3+...+3^{2019}\)

\(\Rightarrow3S=3^2+3^3+3^4+...+3^{2020}\)

\(\Rightarrow3S-S=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+...+3^{2019}\right)\)

\(\Rightarrow2S=3^{2020}-3\)

\(\Rightarrow S=\frac{3^{2020}-3}{2}\)

21 tháng 6 2019

từng số hạng của tổng S chia hết cho 3 nên tổng S chia hết cho 3

21 tháng 6 2019

#)Giải :

\(S=3+3^2+3^3+...+3^{2019}\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)

\(S=3\left(1+3+9\right)+3^2\left(1+3+9\right)+...+3^{2017}\left(1+3+9\right)\)

\(S=13\left(3+3^3+...+3^{2017}\right)\)chia hết cho 3 ( đpcm )

s = 3^1 +3^2 + 3^3 +....+ 3^2017 + 3^2018 + 3^2019

= ( 3^1 +3^2 + 3^3) +...+ ( 3^2017 + 3^2018 + 3^2019 )  (  2019 : 3 =673 # chia hết nên có thể ghép cặp như vậy)

= 3( 1+ 3 +3^2 )+ 3^4(  1+ 3 +3^2)+...+ 3^2017( 1+ 3 +3^2) ( háp dụng tính chất phân phối)

= 13( 3+ 3^4+....+3^2017) => chia hết cho 13

học tốt

30 tháng 9 2017

Giải:

a) Đặt:

\(A=1+2^2+2^3+2^4+...+2^{2018}\)

\(\Leftrightarrow2A=2+2^3+2^4+2^5+...+2^{2019}\)

\(\Leftrightarrow2A-A=\left(2+2^{2019}\right)-\left(1+2^2\right)\)

\(\Leftrightarrow A=2+2^{2019}-1-2^2\)

\(\Leftrightarrow A=2+2^{2019}-5\)

\(\Leftrightarrow A=2^{2019}-3\)

Vậy \(A=2^{2019}-3\).

b) Đặt:

\(B=1+5+5^2+5^3+...+5^{2017}\)

\(\Leftrightarrow5B=5+5^2+5^3+5^4+...+5^{2018}\)

\(\Leftrightarrow5B-B=5^{2018}-1\)

\(\Leftrightarrow4B=5^{2018}-1\)

\(\Leftrightarrow B=\dfrac{5^{2018}-1}{4}\)

Vậy \(B=\dfrac{5^{2018}-1}{4}\).

Chúc bạn học tốt!

26 tháng 10 2017

a)A= 1 + 22+23 + 24 +....+22018

2A = 22 + 23 + 24 +......+22018 + 22019

_

A= 1 + 22+23 + 24 +....+22018

A= 22019 - 1

8 tháng 10 2017

\(S=1+2^1+...+2^{100}\)

\(\Rightarrow2S=2+2^2+...+2^{101}\)

\(\Rightarrow2S-S=2+2^2+...+2^{101}-1-2^1-...-2^{100}\)

\(\Rightarrow S=2^{101}-1\)

29 tháng 10 2021

 Làm  thế  nào đây ?

29 tháng 10 2021

ai giúp mình với