Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
\(=\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+\frac{-1}{7.8}+\frac{-1}{8.9}+\frac{-1}{9.10}\)
\(=\frac{-1}{4}+\frac{1}{5}-\frac{1}{5}+\frac{1}{6}-...-\frac{1}{9}+\frac{1}{10}\)
\(=-\frac{1}{4}+\frac{1}{10}\)
\(=-\frac{3}{20}\)
\(b,B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(\frac{B}{7}=\frac{5}{2.7}+\frac{4}{11.7}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-....-\frac{1}{28}\)
\(=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
a) \(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
\(\Rightarrow-1.A=\frac{1}{20}+\frac{1}{30}+........+\frac{1}{90}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+........+\frac{1}{9.10}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+........+\frac{1}{9}-\frac{1}{10}=\frac{1}{4}-\frac{1}{10}=\frac{3}{20}\)
\(\Rightarrow A=\frac{3}{20}:\left(-1\right)=\frac{-3}{20}\)
b) \(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(\Rightarrow\frac{1}{7}B=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(\Rightarrow B=\frac{13}{28}:\frac{1}{7}=\frac{13}{28}.7=\frac{13}{4}\)
a) A = \(\frac{1}{5}\) - \(\frac{1}{4}\)+ \(\frac{1}{6}\)- \(\frac{1}{5}\)+ \(\frac{1}{7}\)-\(\frac{1}{6}\)+\(\frac{1}{8}\)-\(\frac{1}{7}\)+\(\frac{1}{9}\)- \(\frac{1}{8}\)+ \(\frac{1}{10}\)- \(\frac{1}{9}\)
= \(\frac{-1}{4}\)+\(\frac{1}{10}\)= \(\frac{-6}{40}\)= \(\frac{-3}{20}\)
b) B = \(\frac{5}{2.1}\)+ \(\frac{1}{11}\)(4 + \(\frac{3}{2}\)) + \(\frac{1}{2.15}\)(1 + \(\frac{13}{2}\))
= \(\frac{5}{2.1}\)+ \(\frac{1}{11}\).\(\frac{11}{2}\)+ \(\frac{1}{2.15}\).\(\frac{15}{2}\)
= \(\frac{5}{2}\)+ \(\frac{1}{2}\)+ \(\frac{1}{4}\)= 3 + \(\frac{1}{4}\)= \(\frac{13}{4}\)
\(A=-\frac{1}{20}+-\frac{1}{30}+-\frac{1}{42}+...+-\frac{1}{90}\)
\(\Leftrightarrow A=\left(-1\right)\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\left(-1\right)\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(A=-\frac{3}{20}\)
\(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(B:7=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(\frac{B}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.4}\)
\(\frac{B}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{15}-\frac{1}{28}\)
\(\frac{B}{7}=\frac{1}{2}-\frac{1}{28} \)
\(\frac{B}{7}=\frac{13}{28}\)
B=\(\frac{13}{28}\cdot7\)
B=\(\frac{13}{4}\left(=3\frac{1}{4}\right)\)
\(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(\frac{B}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.4}\)
\(\frac{B}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{15}-\frac{1}{28}\)
\(\frac{B}{7}=\frac{1}{2}-\frac{1}{28}\)
\(\frac{B}{7}=\frac{13}{28}\)
\(B=\frac{13}{4}\left(=3\frac{1}{4}\right)\)
B = \(\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
B = \(7.\left(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\right)\)
B = \(7.\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\right)\)
B = \(7.\left(\frac{1}{2}-\frac{1}{28}\right)\)
B = \(7.\frac{13}{28}\)
B = \(\frac{13}{4}\)
\(a,\Rightarrow A=-1\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{9.10}\right)\)
\(\Rightarrow A=-1\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(\Rightarrow A=-1\left(\dfrac{1}{4}-\dfrac{1}{10}\right)\)
\(\Rightarrow A=\dfrac{-3}{20}\)
Bài 2:
\(a,\dfrac{1717}{8585}=\dfrac{1717:1717}{8585:1717}=\dfrac{1}{5};\dfrac{1313}{5151}=\dfrac{1313:101}{5151:101}=\dfrac{13}{51}\\ \dfrac{1}{5}=\dfrac{51}{255}< \dfrac{65}{255}=\dfrac{13}{51}\\ \Rightarrow\dfrac{1717}{8585}< \dfrac{1313}{5151}\)
\(b,\dfrac{201201}{202202}=\dfrac{201201:1001}{202202:1001}=\dfrac{201}{202}=\dfrac{201\cdot1001001}{202\cdot1001001}=\dfrac{201201201}{202202202}\)
\(\Rightarrow\frac{B}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(\Rightarrow B=\frac{13}{28}.7=\frac{13}{4}\)
\(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(B=\frac{5}{2}+\frac{4}{11}+\frac{3}{22}+\frac{1}{30}+\frac{13}{60}\)
\(B=\left(\frac{5}{2}+\frac{4}{11}+\frac{3}{22}\right)+\left(\frac{1}{30}+\frac{13}{60}\right)\)
\(B=\frac{66}{22}+\frac{15}{60}\)
\(B=3+\frac{1}{4}\)
\(B=\frac{13}{4}\)