K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

Bài toán này bạn chỉ cần quan tâm đến phương án D là đúng thôi, vì để chứng minh B, C sai thì lại tương đối phức tạp, không cần thiết.

11 tháng 10 2015

Theo giả thiết uC trễ pha pi/2 so vơi u --> u cùng pha với i --> Cộng hưởng, cường độ dòng điện đạt cực đại.

Vậy khi tăng f thì cường độ I giảm.

Chọn D.

17 tháng 10 2015

\(U_{AM}=I.Z_{AM}\)\(Z_{AM}\)không thay đổi, nên để \(U_{AM}\) đạt giá trị lớn nhất khi thay đổi C thì dòng điện Imax --> Xảy ra hiện tượng cộng hưởng: \(Z_L=Z_C\)

và \(I=\frac{U}{R+r}\)

Công suất của cuộn dây khi đó: \(P=I^2.r=\left(\frac{U}{R+r}\right)^2.r\) (*)

+ Nếu đặt vào 2 đầu AB một điện áp không đổi và nối tắt tụ C thì mạch chỉ gồm r nối tiếp với R (L không có tác dụng gì)

Cường độ dòng điện của mạch: \(I=\frac{25}{R+r}=0,5\Rightarrow R+r=50\)

Mà R = 40 suy ra r = 10.

Thay vào (*) ta đc \(P=\left(\frac{200}{50}\right)^2.10=160W\)

 

17 tháng 10 2015

Bạn học đến điện xoay chiều rồi à. Học nhanh vậy, mình vẫn đang ở dao động cơ :(

22 tháng 11 2015

\(Z_C=\frac{1}{\omega C}=\frac{1}{100\pi.\frac{10^{-4}}{\pi}}=100\Omega\)

\(U_0=I_0Z_C=2\sqrt{2}.100=200\sqrt{2}V\)

Do u vuông pha với i nên

\(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)

\(\Leftrightarrow\left(\frac{u}{200\sqrt{2}}\right)^2+\left(\frac{\sqrt{6}}{2\sqrt{2}}\right)^2=1\)

\(\Rightarrow u=\pm100\sqrt{2}\left(V\right)\)

Do u trễ pha \(\frac{\pi}{2}\)so với i mà i đang tăng nên u < 0

\(\Rightarrow u=-100\sqrt{2}\left(V\right)\)

27 tháng 12 2022

\(Z_L=\omega L=\dfrac{1}{\pi}\cdot100\pi=100\Omega\)

Để \(u;i\) cùng pha \(\Rightarrow\varphi=0\) do \(\varphi_u=0\).

\(tan\varphi=tan0=0\)

Mà \(tan\varphi=\dfrac{Z_L-Z_C}{R}=0\)

\(\Rightarrow Z_C=Z_L=100\Omega\)

Mặt khác: \(Z_C=\dfrac{1}{\omega C}\Rightarrow C=\dfrac{1}{\omega\cdot Z_C}=\dfrac{1}{100\pi\cdot100}=\dfrac{10^{-4}}{\pi}\left(C\right)\)

13 tháng 6 2016

Chia thành hai bài toán nhỏ

Bài 1, $R$ thay đổi để $U_{RL}$ không đổi, bài này quen thuộc rồi, ta được : $Z_{C_1}=2Z_L=400 \Omega$

Bài toán 2: $C$ thay đổi để $I_{max}$ là cộng hưởng thì $Z_C=Z_L=200 \Omega$

Vậy cần tăng tụ C thêm $\dfrac{10^{-4}}{4\pi}F$

21 tháng 1 2018

Chọn B

U RL = | · Z RL = U R 2 + Z L 2 R 2 + Z L - Z C 2 ∉ R ⇔ Z L 2 = Z L - Z C 2 ⇒ Z C = 2 Z L Z = R 2 + Z L 2 = U I = 100 Ω ⇒ Z L ≤ 100 Ω ⇒ Z C = 2 Z L ≤ 200 Ω ⇒ C ≥ 1 100 π 200 = 50 π 10 - 6 F

1.Đặt điện áp xoay chiều u = 220\(\sqrt{2}\) cos( 100\(\pi\)t) V ( t tính bắng s) vào 2 đầu đoạn mạch gồm điện trở R = 100 ôm , cuộn cảm thuần L = \(\frac{2\sqrt{3}}{\pi}\)H và tụ điện C = \(\frac{10^{-4}}{\pi\sqrt{3}}\)F mắc nối tiếp . Trong 1 chu kì , khoảng thời gian điện áp hai đầu đoạn mạch sinh công dương cung cấp điện năng cho mạch bằng  ?2.Cho mạch xoay chiều gồm 1 cuộn dây có độ tự cảm L...
Đọc tiếp

1.Đặt điện áp xoay chiều u = 220\(\sqrt{2}\) cos( 100\(\pi\)t) V ( t tính bắng s) vào 2 đầu đoạn mạch gồm điện trở R = 100 ôm , cuộn cảm thuần L = \(\frac{2\sqrt{3}}{\pi}\)H và tụ điện C = \(\frac{10^{-4}}{\pi\sqrt{3}}\)F mắc nối tiếp . Trong 1 chu kì , khoảng thời gian điện áp hai đầu đoạn mạch sinh công dương cung cấp điện năng cho mạch bằng  ?

2.Cho mạch xoay chiều gồm 1 cuộn dây có độ tự cảm L điện trở R mắc nối tiếp với tụ điện C .Đặt vào 2 đầu đoạn mạch 1 điện áp u = \(100\sqrt{2}cos\left(100\pi t\right)\)V .Khi đo điện áp hiệu dụng đo được ở 2 đầu tụ điện có giá trị gấp 1,2 lần điện áp hiệu dụng ở 2 đầu cuộn dây.Dùng dây dẫn nối tắt 2 bản tụ điện thì cường độ dòng điện hiệu dụng không đổi bằng 0,5 A .Tìm ZL

5
22 tháng 10 2015

Bạn nên gửi mỗi câu hỏi một bài thôi để mọi người tiện trao đổi.

1. \(Z_L=200\sqrt{3}\Omega\)\(Z_C=100\sqrt{3}\Omega\)

Suy ra biểu thức của i: \(i=1,1\sqrt{2}\cos\left(100\pi t-\frac{\pi}{3}\right)A\)

Công suất tức thời: p = u.i

Để điện áp sinh công dương thì p > 0, suy ra u và i cùng dấu.

Biểu diễn vị trí tương đối của u và i bằng véc tơ quay ta có: 

u u i i 120° 120°

Như vậy, trong 1 chu kì, để u, i cùng dấu thì véc tơ u phải quét 2 góc như hình vẽ.

Tổng góc quét: 2.120 = 2400

Thời gian: \(t=\frac{240}{360}.T=\frac{2}{3}.\frac{2\pi}{100\pi}=\frac{1}{75}s\)

22 tháng 10 2015

2. Khi nối tắt 2 đầu tụ điện thì cường độ dòng điện hiệu dụng không đổi \(\Rightarrow Z_1=Z_2\Leftrightarrow Z_C-Z_L=Z_L\Leftrightarrow Z_C=2Z_L\)

\(U_C=1,2U_d\Leftrightarrow Z_C=2Z_d\Leftrightarrow Z_C=2\sqrt{R^2+Z_L^2}\)

\(\Leftrightarrow2Z_L=\sqrt{R^2+Z_L^2}\Leftrightarrow R=\sqrt{3}Z_L\)

Khi bỏ tụ C thì cường độ dòng điện của mạch là: \(I=\frac{U}{Z_d}=\frac{U}{\sqrt{R^2+Z_L^2}}=\frac{220}{\sqrt{3.Z_L^2+Z_L^2}}=0,5\)

\(\Rightarrow Z_L=220\Omega\)

1 tháng 2 2017

*) Từ hai biểu thức dòng điện, rút ra 2 kết luận sau: khi \(\omega\) thay đổi thì

+) I cực đại tăng \(\frac{I_2}{I_1}=\sqrt{\frac{3}{2}}\Rightarrow \frac{Z_1}{Z_2}=\sqrt{\frac{3}{2}}\)

+) Pha ban đầu của i giảm 1 góc bằng: \(\frac{\pi}{3}-\left(-\frac{\pi}{12}\right)=\frac{5\pi}{12}=75^0\)

tức là hai véc tơ biểu diễn Z1 và Z2 lệch nhau 75 độ, trong đó Z2 ở vị trí cao hơn

*) Dựng giản đồ véc-tơ:

Z1 Z2 O A B H R

Trong đó: \(\widehat{AOB}=75^0\);

Đặt ngay: \(Z_1=OB=\sqrt{\frac{3}{2}}\Rightarrow Z_2=1\)

Xét tam giác OAB có \(\widehat{AOB}=75^0;OA=1;OB=\sqrt{\frac{3}{2}}\) và đường cao OH.

Với trình độ của bạn thì thừa sức tính ngay được: \(OH=\frac{\sqrt{3}}{2}\)

\(\Rightarrow R=OH=\frac{\sqrt{3}}{2}\)

*) Tính \(Z_L,Z_C\):

\(Z_1^2=R^2+\left(Z_L-Z_C\right)^2;\left(Z_L< Z_C\right)\)

\(Z_2^2=R^2+\left(\sqrt{3}Z_L-\frac{Z_C}{\sqrt{3}}\right)^2\)

Thay số vào rồi giải hệ 2 ẩn bậc nhất, tìm được: \(Z_L=\frac{\sqrt{3}}{2};Z_C=\sqrt{3}\)

*) Tính

\(\frac{R^2L}{C}=\frac{R^2\cdot\left(L\omega_1\right)}{C\omega_1}=R^2Z_LZ_C\\ =\left(\frac{\sqrt{3}}{2}\right)^2\cdot\frac{\sqrt{3}}{2}\cdot\sqrt{3}=\frac{9}{4}\)

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Ra $\frac{1}{2}$ ông ạ

Thầy tôi bảo có cách dùng giản đồ vector ngắn kinh khủng mà chưa ngộ ra.

17 tháng 8 2019

Đáp án B