Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a chia 18 dư 2
Đặt \(a=18k+12\left(k\in N\right)\)
\(a=18k+12=3\left(6k+4\right)⋮3\)
\(a=18k+12=9\left(2k+1\right)+3⋮̸9\)
\(a=18k+12=3\left(6k+4\right)⋮3\)
\(a=18k+12=18k+9+3=9\left(2k+1\right)+3⋮̸9\)
a chia 18 dư 12 => a = 18.b + 12
Ta thấy 18 chia hết cho 3 => 18b chia hết cho 3
12 chia hết cho 3
=> 18b + 12 chia hết cho 3 hay a chia hết cho 3
Ta thấy 18 chia hết cho 9 => 18b chia hết cho 9
12 ko chia hết cho 9
=> 18b + 12 ko chia hết cho 9 hay a ko chia hết cho 9
a chia 18 dư 12 => a = 18.b + 12
Ta thấy 18 chia hết cho 3 => 18b chia hết cho 3
12 chia hết cho 3
=> 18b + 12 chia hết cho 3 hay a chia hết cho 3
Ta thấy 18 chia hết cho 9 => 18b chia hết cho 9
12 ko chia hết cho 9
=> 18b + 12 ko chia hết cho 9 hay a ko chia hết cho 9
a) a chia hết cho 2 nhưng ko chia hết cho 4
b) b chia hết cho 3,4 nhưng ko chia hết cho 18
a) Chia hết cho 2
ko chia hết cho 4
b)
Chia hết cho 3, 4, 18
Cho k là thương của \(a:12\) \(\left(k\in N\right)\), ta có \(a=12k+18\)
\(-\) \(12k⋮4\) (vì \(12⋮4\))
\(-\) \(18⋮̸4\) \(\Rightarrow a⋮̸4\)
\(-\) \(12k⋮6\) (vì \(12⋮6\))
\(-\) \(18⋮6\) \(\Rightarrow a⋮6\)
Bài giải:
Gọi q là thương trong phéo chia a cho 12, ta có a = 12q + 8. Vì 12 = 4 . 3 nên 12q = 4 . 3q. Do đó 12q chia hết cho 4; hơn nữa 8 cũng chia hết cho 4. Vậy a chia hết cho 4.
Lập luận tương tự ta đi tới kết luận; a không chia hết cho 6.