Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
Gọi a = k1 . 3 + r
b = k2 . 3 + r
Xét a - b, ta có: a - b = ( k1 . 3 + r) - (k2 . 3 + r)
a - b = k1 . 3 + r - k2 . 3 - r
a - b = k1 . 3 - k2 . 3
a - b = 3 . ( k1 - k2)
Suy ra a - b chia hết cho 3 (đpcm)
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
1.
a chia hết cho 2 dư 1
=> a có dạng là 2n+1
b chia hết cho 2 dư 1
=> b có dang là 2m+1
=>a-b=2n+1-2m-1=2n-2m=2 (n-m) luôn chia hết cho 2
Khi chia 3 số này cho 4 đc các số dư là : 1,2,3
Suy ra gọi các số này là : 4k+1 , 4k+2, 4k+3
Tổng : 4k ( 1+2+3) = 4k . 6
Mà 4k chia hết cho 2
6 chia hết cho 2 suy ra điều phải chứng minh ( DPCM là a+b+c chia hết cho 2)
Nếu là số dư khác nhau thì a:3 dư 1,b:3 dư 2 hoặc ngược lại.
Nếu vậy thì (a+b) chia hết cho 3 vì số dư là 1+2=3 chia hết cho 3
Đây chỉ là mình nghĩ sao viết vậy thôi nha!
Xét các trường hợp:
TH1: a = 3k + 1; b = 3k + 2. ( k là số tự nhiên)
=> a + b = 3k + 1 + 3k + 2 = 6k + 3 = 3.( k + 1 )
Vì 3 chia hết cho 3 => 3.( k + 1 ) chia hết cho 3 hay a + b chia hết cho 3
TH2: a = 3k + 2; b = 3k + 1. ( k là số tự nhiên)
=> a + b = 3k + 2 + 3k + 1 = 6k + 3 = 3.( k + 1 )
Vì 3 chia hết cho 3 => 3.( k + 1 ) chia hết cho 3 hay a + b chia hết cho 3
Vậy ( a + b ) chia hết cho 3
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
a;b đều chia 3 dư r nên a=3k+r ; b=3q+r ( k;q thuộc N )
=> a-b = 3k+r-3q-r = 3k-3q = 3.(k-q) chia hết cho 3
=> ĐPCM
k mk nha
Gọi x là thương của phép chia a:3
Gọi y là thương của phép chia b:3
Ta có:
3x+r=a
Và: 3y+r=b
=> a-b=3x+r-(3y+r)=3x+r-3y-r=3x-3y=3(x-y)
=> a-b=3.(x-y) Luôn chia hết cho 3 => đpcm