K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

Khi cắt hình nón bởi mặt phẳng song song với đường sinh của hình nón thì ta được thiết diện là một parabol.

Giả sử thiết diện như hình vẽ.

Khi đó ta luôn có A B ⊥ M H  

Kẻ HE / /SA trong mặt phẳng (SAB) 

Khi đó SA//(HME) 

Đặt BH=x(0<x<24), ta có

S A = S O 2 + O A 2 = 16 2 + 12 2 = 20 c m  

Xét tam giác AMB vuông tại M có

M H 2 = A H . B H = x 24 - x ⇒ M H = x 24 - x

(hệ thức lượng trong tam giác vuông).

Xét tam giác SAB có HE//SA

⇒ B H A B = H E S E ⇔ H E = x . 20 24 = 5 6 x  

Thiết diện parabol có chiều cao H E = 5 6 x  và bán kính r=MH=x(24-x) 

Diện tích thiết diện là

≈ 207 , 8 c m 2

Dấu = xảy ra khi x=72-3x ⇔ x=18(tm)

Vậy diện tích lớn nhất của thiết diện là  S ≈ 207 , 8 c m 2

Chọn đáp án D.

26 tháng 1 2017

8 tháng 3 2017

Chọn đáp án A

2 tháng 5 2017

30 tháng 8 2019

11 tháng 6 2019

Chọn C

1 tháng 4 2016

a) Đường sinh l của hình nón là:

l =  =  = 5√41 (cm).

Diện tích xung quanh của hình nón là:

Sxq = πrl = 125π√41 (cm2)

b) Vnón = = (625.20π)/3 = (12500π)/3 (cm3)

c) Giả sử thiết diện cắt hình tròn đáy theo đoạn thẳng AB.

GỌi I là trung điểm AB, O là đỉnh của nón thì thiết diện là tam giác cân OAB.

Hạ HK vuông góc AI, H là tâm của đáy, thì HK vuông góc ( OAB) và theo giả thiết HK = 12 (cm)


 

27 tháng 3 2019

17 tháng 7 2019