K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

KẾT QUẢ CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC .

Giải nhất : Ngô Tấn Đạt . Phần thưởng : Thẻ cào 100k + 30GP

Giải nhì : Hoàng Thảo Linh và Diệp Băng Dao . Phần thưởng : Thẻ cào 50k + 20GP

Giải ba : Truy kích và Luân Đào . Phần thưởng : 15GP

Nhờ thầy @phynit trao giải cho những bạn trên ạ . Cảm ơn các bạn dã ủng hộ cuộc thi của mình . GOOD LUCK !

ĐÁP ÁN VÒNG 3 : " CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC "

Câu 1 :

a ) ĐKXĐ : \(x\ge0\) , \(x\ne25\) , \(x\ne9\)

b )

\(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\dfrac{25-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\left(\dfrac{25-x-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\dfrac{-5}{\sqrt{x}+5}:\left(\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\)

\(=\dfrac{-5}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}+3\right)}{\sqrt{x}+5}\)

\(=\dfrac{-5}{\sqrt{x}+5}\times\dfrac{\sqrt{x}+5}{-\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5}{\sqrt{x}+3}\)

c )

Để biểu thức A nhận giá trị nguyên thì \(5\) phải chia hết cho \(\sqrt{x}+3\)

Ta có : \(Ư\left(5\right)=\left(-5;-1;1;5\right)\) . Mà \(\sqrt{x}+3\ge3\) .

\(\Rightarrow\sqrt{x}+3=5\Rightarrow\sqrt{x}=2\Rightarrow x=4\left(N\right)\)

Vậy \(x=4\) thì biểu thức A nhận giá trị nguyên .

d )

Ta có :

\(B=\dfrac{A\left(x+16\right)}{5}=\dfrac{5\left(x+16\right)}{\dfrac{\sqrt{x}+3}{5}}=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{x-9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\)

Theo BĐT Cô - Si cho hai số không âm ta có :

\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\sqrt{x}+3\times\dfrac{25}{\sqrt{x}+3}}=2\sqrt{25}=10\)

\(\Rightarrow\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\ge10-6=4\)

Dấu \("="\) xảy ra khi \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow\sqrt{x}+3=5\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

Vậy GTNN của \(B\) là 4 khi \(x=4\)

Câu 2 :

a ) \(\left(x^2-x+1\right)\left(x^2+4x+1\right)=6x^2\)

\(\Leftrightarrow x^4+4x^3+x^2-x^3-4x^2-x+x^2+4x+1-6x^2=0\)

\(\Leftrightarrow x^4+3x^3-8x^2+3x+1=0\)

Xét : 0 không phải là nghiệm của phương trình trên .

\(\Leftrightarrow x^2+3x-8+\dfrac{3}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+\left(3x+\dfrac{3}{x}\right)-8=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-10=0\)

Đặt \(x+\dfrac{1}{x}=t\) . Phương trình trở thành :

\(t^2+3t-10=0\)

\(\Delta=9+40=49>0\)

\(\Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{-3+\sqrt{49}}{2}=2\\t_2=\dfrac{-3-\sqrt{49}}{2}=-5\end{matrix}\right.\)

Với \(t_1=2\) :

\(\Leftrightarrow x+\dfrac{1}{x}=2\)

\(\Leftrightarrow\) \(\dfrac{x^2}{x}+\dfrac{1}{x}=\dfrac{2x}{x}\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

Với \(t=-5\) :

\(\Leftrightarrow x+\dfrac{1}{x}=-5\)

\(\Leftrightarrow\) \(\dfrac{x^2}{x}+\dfrac{1}{x}=\dfrac{-5x}{x}\)

\(\Leftrightarrow x^2+5x+1=0\)

\(\Delta=25-4=21>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-5+\sqrt{21}}{2}\\x_2=\dfrac{-5-\sqrt{21}}{2}\end{matrix}\right.\)

Vậy \(S=\left\{1;\dfrac{-5+\sqrt{21}}{2};\dfrac{-5-\sqrt{21}}{2}\right\}\)

b ) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)

\(\Leftrightarrow3\left(x^2+x\right)-2\sqrt{x^2+x}-1=0\)

\(\Leftrightarrow3\left(x^2+x\right)-3\sqrt{x^2+x}+\sqrt{x^2+x}-1=0\)

\(\Leftrightarrow3\sqrt{x^2+x}\left(\sqrt{x^2+x}-1\right)+\left(\sqrt{x^2+x}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+x}-1\right)\left(3\sqrt{x^2+x}+1=0\right)\)

\(\) \(\Leftrightarrow\left(\sqrt{x^2+x}-1\right)=0\) . Vì \(3\sqrt{x^2+x}+1>0\)

\(\Leftrightarrow x^2+x-1=0\)

\(\Delta=1+4=5>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-1+\sqrt{5}}{2}\\x_2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy ..............................

c )

\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\) ( ĐK : \(x\ge-1\) )

\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}-2x-\sqrt{\left(x+1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(\sqrt{x+3}-2x\right)\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x}+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy......................

d ) \(x^2+9x+20=2\sqrt{3x+10}\) ( ĐK : \(x\ge-\dfrac{10}{3}\) )

\(\Leftrightarrow\left(x^2+6x+9\right)+\left(3x+10-2\sqrt{3x+10}+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{3x+10}-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{3x+10}=1\end{matrix}\right.\Leftrightarrow x=-3\)

Vậy...............................

Câu 3 :

a )

\(VT=\dfrac{\sqrt{\dfrac{abc+4}{a}-4\sqrt{\dfrac{bc}{a}}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{abc+4}{a}-\dfrac{4\sqrt{abc}}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{abc+4-4\sqrt{abc}}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{\left(\sqrt{abc}-2\right)^2}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\dfrac{\sqrt{abc}-2}{\sqrt{a}}}{\sqrt{abc}-2}=\dfrac{1}{\sqrt{a}}\left(đpcm\right)\)

b )

Nếu trong \(a+bc;b+ca;c+ab\) không có số nào lớn hơn 1 thì giá trị của mỗi số hạng củaVT ít nhất là \(\dfrac{1}{3}\)

Nếu trong \(a+bc;b+ca;c+ab\) có một số lớn hơn 1 khi đó : \(c=\dfrac{1-ab}{a+b}\)\(a+b< 1\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{2a+2bc+1}+\dfrac{1}{2b+2ca+1}\ge\dfrac{4}{2a+2b+2bc+2ca+2}=\dfrac{2}{a+b+2-ab}\)

Khi đó ta cần chứng minh :

\(\dfrac{2}{2+a+b-ab}+\dfrac{1}{2c+2ab+1}\ge1\)

Hay :\(\dfrac{2}{a+b-ab+2}+\dfrac{a+b}{a+b-2ab+2ab\left(a+b\right)+2}\ge1\)

Ta có :

\(VT=\dfrac{4+4\left(a+b\right)-4ab+3ab\left(a+b\right)+\left(a+b\right)^2}{\left(2+a+b-ab\right)\left(2+a+b-2ab+2ab\left(a+b\right)\right)}\)

Đặt \(S=a+b< 1;P=ab\) . Ta cần chứng minh :

\(\dfrac{4+4S-4P+3SP+S^2}{4S-6P+3SP+S^2+2S^2P-2P^2+2SP^2+4}\ge1\)

\(\Leftrightarrow2P\ge2S^2P-2P^2+2S^2P\)

\(\Leftrightarrow2P\left(1-S\right)\left(P+S+1\right)\ge0\) ( Đúng vì \(S< 1\) )

Dấu \("="\) xảy ra khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoàn vị .

Câu 4 :

A B C H D E

a )

Tứ giác ADHE có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^0\)

\(\Rightarrow ADHE\) là hình chữ nhật .

\(\Rightarrow\widehat{AED}=\widehat{HAE}\)

Ta lại có : \(\widehat{HAE}=\widehat{ABC}\) ( Cùng phụ với góc C )

\(\Rightarrow\widehat{AED}=\widehat{ABC}\)

Xét \(\Delta AED\)\(\Delta ABC\) ta có :

\(\left\{{}\begin{matrix}\widehat{A}:Chung\\\widehat{AED}=\widehat{ABC}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AED\sim\Delta ABC\left(g-g\right)\)

b )

Ta có : \(\left\{{}\begin{matrix}S_{ADE}=\dfrac{1}{2}S_{ADHE}\\S_{ABC}=2S_{ADHE}\end{matrix}\right.\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}}=\dfrac{1}{4}\)

Mặt khác : \(\Delta ADE\sim\Delta ABC\) ( Câu a )

\(\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{DE}{BC}\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\) \(\dfrac{DE}{BC}=\dfrac{1}{2}\Rightarrow DE=\dfrac{1}{2}BC\)

Gọi M là trung điểm của BC .

\(\Delta ABC\) vuông tại A . \(\Rightarrow AM=\dfrac{1}{2}BC\)

\(\Rightarrow DE=AM\)

\(AH=DE\) ( Do ADHE là hình chữ nhật )

\(\Rightarrow AM=AH\) ( Đường trung tuyến cũng là đường cao )

\(\Rightarrow\Delta ABC\) vuông cân tại A ( đpcm )

Câu 5 :

Ta có :

\(\left\{{}\begin{matrix}2011+y^2=y^2+xy+yz+zx=\left(x+y\right)\left(y+z\right)\\2011+z^2=z^2+xy+yz+zx=\left(x+z\right)\left(y+z\right)\\2011+x^2=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\end{matrix}\right.\)

\(\Rightarrow Q=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\dfrac{\left(x+y\right)\left(x+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=2\left(xy+yz+zx\right)=2.2011=4022\)

13
25 tháng 6 2018

bucminh

25 tháng 6 2018

Mi kết liễu đời ta đii :v

15 tháng 8 2021

ai giúp với ạ :<

2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

1: Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\dfrac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\dfrac{25-x-x+9-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-3x+59}\)

\(=\dfrac{-5\left(\sqrt{x}-3\right)}{-3x+59}\)

\(=\dfrac{5\sqrt{x}-15}{3x-59}\)

2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

7 tháng 7 2021

đK: \(x\ge0;x\ne25;x\ne9\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right]:\left[\dfrac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right]\)

\(=\left[\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right]:\dfrac{25-x-\left(x-9\right)+\left(x-25\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{9-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-\sqrt{x}-3}{\sqrt{x}+5}\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{\sqrt{x}+5}{-\left(\sqrt{x}+3\right)}=\dfrac{5}{\sqrt{x}+3}\)

 

Sửa đề: căn x-5/căn x-3

a: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{5}{\sqrt{x}+3}\)

b: x-5căn x+6=0

=>căn x=2 hoặc căn x=3

=>x=9(loại) hoặc x=4(nhận)

Khi x=4 thì A=5/(2+3)=5/5=1

a) Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\dfrac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\left(\dfrac{25-x-\left(x-9\right)+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-\dfrac{\sqrt{x}+5}{\sqrt{x}+5}\right):\left(\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}:\dfrac{x+9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{x+9}\)

\(=\dfrac{-5\left(\sqrt{x}-3\right)}{x+9}\)