K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2018

Đáp án A

Để hàm số đồng biến trên khoảng 2 ; + ∞ thì

Xét f x = 3 x 2 − 6 x + 5 12 x − 1 có đạo hàm  f ' x = 3 x 2 − 6 x + 1 12 x − 1 2 > 0 x > 2

Do đó f(x) đồng biến trên khoảng 2 ; + ∞  hay  M i n f x = f 2 = 5 12 ⇒ m < 5 12

Lại có m ∈ − 2017 ; 2017 m ∈ ℤ .

Suy ra có 2018 giá trị của m thỏa mãn

28 tháng 6 2018

Chọn B.

6 tháng 11 2017

Đáp án D

Cách giải:

=> Hàm số đồng biến trên 

 Phương trình (1) có 2 nghiệm phân biệt 

Theo đinh lí Viet ta có

Khi đó, để hàm số đồng biến trên khoảng (1;+∞) thì

 ( vô lí )

Vậy m ≥ 13

Mà 

Số giá trị của m thỏa mãn là: 2018 - 13 + 1 = 2006

23 tháng 5 2019

21 tháng 3 2019

Đáp án B

Ta có  y ' = 4 sin 2 x   cos   x sin   x - ( 2 m 2 - 5 m + 2 ) cos   x = cos   x [ ( 2 sin   x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ]

Xét trên ( 0 ; π 2 )  ta thấy cos   x > 0 , để hàm số đồng biến trên khoảng này thì  ( 2 sin   x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ≥ 0  với  ∀ x ∈ ( 0 ; π 2 )  hay ( 2 m 2 - 5 m + 3 ) ≤ 0 ⇒ 1 ≤ m ≤ 3 2  do m nguyên nên tồn tại duy nhất m=1

 

4 tháng 6 2019

Đáp án C

Ta có y ' = − m 2 + 2016 m + 2017 x + m 2 ,   y ' = 0  đồng biến trên từng khoảng xác định nếu

y ' > 0 ∀ x ∈ D ⇔ − m 2 + 2016 m + 2017 > 0 ⇔ m ∈ − 1 ; 2017

Ta đếm số nguyên trong

  − 1 ; 2017 thì có 2016 số nguyên trong đó.

4 tháng 3 2018

 

Chọn D.

Phương pháp:

 

7 tháng 2 2017

22 tháng 9 2019

25 tháng 11 2019

Đáp án B