Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Bài này vế trái mình đã giải 1 lần rồi bạn.
Bạn dùng hằng đẳng thức A3 + B3 = (A + B)3 - 3AB(A + B) để có kết quả (a-b)(b-c)(c-a) = 70
70 = 2.5.7 do đó suy ra a-b=2, b-c=5, c-a=7. Suy ra A = 14.
Vì A là tổng 3 giá trị tuyệt đối nên nếu có hoán vị a-b, b-c, c-a thì kết quả vẫn ko đổi
Bài 2 câu c mình cũng có giải rồi ko nhớ bạn của bạn nào. Bạn xem lại nhé
Còn câu b) : Gọi K là giao điểm của EM và BC thị EK vuông góc với BC vì M là trực tâm tam giác EBC. Sau đó bạn cm BM.BD = BK.BC ; CM.CA = CK.CB. Bạn cộng từng vế là ra BM.BD + CM.CA = BC2 ko đổi
a) Áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(M=\left(b^2+c^2-a^2\right)^2-4b^2c^2=\left(b^2+c^2-2bc-a^2\right)\left(b^2+c^2+2bc-a^2\right)=\left[\left(b-c\right)^2-a^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)
b) Nếu a,b,c là độ dài các cạnh của tam giác thì ta có : \(\hept{\begin{cases}a+b>c>0\\b+c>a>0\\a+c>b>0\end{cases}\Leftrightarrow\hept{\begin{cases}b-c-a< 0\left(1\right)\\b-c+a>0\left(2\right)\\b+c-a>0\left(3\right)\end{cases}}}\)
Nhân (1) , (2) , (3) theo vế cùng với a+b+c>0 được M<0
c) Dễ thấy rằng : Trong phân tích M thành nhân tử, ta thấy có xuất hiện thừa số (a+b+c)
Mà a+b+c chia hết cho 6 nên suy ra M chia hết cho 6
Đáp án B