Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 10:
góc A=180-130=50 độ
góc B=(180+50)/2=230/2=115 độ
góc C=180-115=65 độ
Có: AB // CD
=> góc ABD = góc BDC (so le trong)
=> AD // BC (dấu hiệu nhận biết 2 đường thẳng //)
=> Hình thang ABCD là hình bình hành
Mà: AB = AD = CD
=> Hình bình hành ABCD là hình thoi
=> Góc ADB = góc BDC (t/chất của hình thoi)
b) Câu này nếu đề là "CA có phải là p/giác của góc C (hoặc góc A) ko vì sao?" thì đáp án là:
- Vì CA là đường chéo của hinh thoi ABCD nên suy ra CA là đường p/giác của góc C (hoặc góc A) (t/chất của hình thoi)
Đáp án là j pn tự biết :)
Mùng 2 Tết r mị chúc pn học giỏi là boy thì đz còn là giri thì xg nha >.<
Vì ABCD là htc nên AB//CD và \(\left\{{}\begin{matrix}\widehat{A}=\widehat{C}=70^0\\\widehat{B}=\widehat{D}=180^0-\widehat{A}=110^0\left(trong.cùng.phía\right)\end{matrix}\right.\)
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)
ta có góc A+ góc D = 180 độ
=> góc D = 180 - góc A = 180-60 = 120 độ
góc B + góc C = 180 độ
=> góc B = 180 - góc C = 180-130=50 độ
tứ giác ABCD có BC = CD và DB là tia phân giác của góc D chứng minh rằng ABCD là hình thang