K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

A B C D E

Chu vi tam giác ADE là: \(2cm^{2}\)

AE là tia phân giác của góc A=>\(\widehat{DAE}=45^{o}\)\(=>\widehat{DEA}=45^{o}\)

=>\(\Delta ADE\) vuông cân =>AD=AE=2cm(vì AD.AE=4 và AD=AE)

Ta có:

\(S_{ABCE}=\dfrac{(AB+CE).BC}{2}=5\\=>AB+CE=5\\=>AB+AB-2=5\\=>AB=3,5\\=>\dfrac{AD}{AB}=\dfrac{2}{3,5}=\dfrac{4}{7}\)

Vậy tỉ số giữa chiều rộng và chiều dài là \(\dfrac{4}{7}\)

29 tháng 5 2017

Gọi chiều rộng hình chữ nhật là x(cm) (x > 0)

→ Chiều dài hình chữ nhật là x + 3(cm)

Do chu vi hình chữ nhật là 100cm nên ta có:

2[ x + (x + 3) ] = 100 ⇔ 2x + 3 = 50 ⇔ x = 23,5

Vậy chiều rộng hình chữ nhật là 23,5cm

Chọn đáp án A.

25 tháng 8 2019

Gọi chiều rộng hình chữ nhật là x(cm) (x > 0)

→ Chiều dài hình chữ nhật là x + 3(cm)

Do chu vi hình chữ nhật là 100cm nên ta có:

2[ x + (x + 3) ] = 100 ⇔ 2x + 3 = 50 ⇔ x = 23,5

Vậy chiều rộng hình chữ nhật là 23,5cm

Chọn đáp án A.

17 tháng 8 2020

1/ Gọi chiều dài hình chữ nhật đó là x ( cm , x > 5 )

=> Chiều rộng hình chữ nhật đó là x - 5 ( cm )

Theo đề bài ta có : x( x - 5 ) = 300

                       <=> x2 - 5x - 300 = 0

                       <=> x2 + 15x - 20x - 300 = 0

                       <=> x( x + 15 ) - 20( x + 15 ) = 0

                       <=> ( x + 15 )( x - 20 ) = 0

                       <=> x = -15 ( không tmđk ) hoặc x = 20 ( tmđk )

=> Chiều dài hình chữ nhật là 20cm

Chiều rộng hình chữ nhật là 20 - 5 = 15cm

Chu vi hình chữ nhật đó là : 2( 20 + 15 ) = 70cm

2/ Gọi độ dài cạnh góc vuông lớn là x( cm , x > 1 )

=> Độ dài cạnh góc vuông nhỏ là x - 1

Theo định lý Pytago ta có :

x2 + ( x - 1 )2 = 52

<=> x2 + x2 - 2x + 1 = 25

<=> 2x2 - 2x + 1 - 25 = 0

<=> 2x2 - 2x - 24 = 0

<=> 2( x2 - x - 12 ) = 0

<=> x2 - x - 12 = 0

<=> x2 + 3x - 4x - 12 = 0

<=> x( x + 3 ) - 4( x + 3 ) = 0

<=> ( x - 4 )( x + 3 ) = 0

<=> x = 4 ( tmđk ) hoặc x = -3 ( không tmđk )

=> Độ dài cạnh góc vuông lớn là 4cm

=> Độ dài cạnh góc vuông bé là 4 - 1 = 3cm

Chu vi hình tam giác = 3 + 4 + 5 = 12cm

17 tháng 8 2020

1) Gọi chiều dài của hình chữ nhật là \(a\left(a>0,cm\right)\)

Chiều rộng của hình chữ nhật là : \(a-5\left(cm\right)\)

Thoe bài ta có : \(a.\left(a-5\right)=300\Leftrightarrow\left(a-20\right)\left(a+15\right)=0\)

\(\Leftrightarrow a=20\left(a>0\right)\)( Thỏa mãn )

Chiều rộng hình chữ nhật là : \(a-5=15\left(cm\right)\)

Vậy chu vi HCN đó là : \(\left(20+15\right)\cdot2=70\left(cm\right)\)

2) Gọi cạnh góc vuông lớn hơn là \(x\left(x>0,cm\right)\)

Cạnh góc vuông nhỏ hơn là : \(x-1\left(cm\right)\)

Theod dịnh lý Pytago thì : \(x^2+\left(x-1\right)^2=5^2\)

\(\Leftrightarrow2x^2-2x-24=0\)

\(\Leftrightarrow x^2-x-12=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow x=4\left(x>0\right)\) ( Thỏa mãn )

Vậy cạnh góc vuông còn lại là \(x-1=3\left(cm\right)\)

Chu vi tam giác đó là : \(3+4+5=12\left(cm\right)\)

23 tháng 2 2017

Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2)

Hình chữ nhật có kích thước là 1cm x 12cm có diện tích là 12cm2 và chu vi là (1 + 12).2 = 26 (cm) (có 26 > 15)

Hình chữ nhật kích thước 2cm x 7cm có diện tích là 14cm2 và chu vi là (2 + 7).2 = 18 (cm)

(có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

b) + Chu vi hình chữ nhật ABCD đã cho là (5 + 3).2 = 16 cm

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là: 16 : 4 = 4 cm

Diện tích hình vuông này là 4.4 = 16 cm2

(Ở trên hình là ví dụ hình vuông MNPQ có cạnh là 4cm)

Vậy SHCN < SHV

+ Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.

Gọi cạnh của hình chữ nhật có độ dài lần lượt là a, b.

Hình vuông có cùng chu vi với hình chữ nhật nên cạnh hình vuông là Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ Hình vuông có diện tích lớn nhất.