K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Vẽ đường cao AH của AADD . a) Tính DB b) Chứng minh AADH 24BDA c) Chứng minh AD = DHDB d) Chứng minh AAHB OABCD e) Tính độ dài đoạn thẳng DH, AH. Bài 2: Cho AABC vuông ở A, có AB = 6cm, AC = 8cm. Vẽ đường cao AH. a) Tính BC b) Chứng minh A ABC S AHBA c) Chứng minh AB = BH BC. Tính BH, HC d) Vẽ phân giác AD của góc A (D eBC). Tính DB Bài 3: Cho hình thang cân ABCD có AB // DC và AB< DC, đường chéo...
Đọc tiếp

Bài 1: Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Vẽ đường cao AH của AADD . a) Tính DB b) Chứng minh AADH 24BDA c) Chứng minh AD = DHDB d) Chứng minh AAHB OABCD e) Tính độ dài đoạn thẳng DH, AH. Bài 2: Cho AABC vuông ở A, có AB = 6cm, AC = 8cm. Vẽ đường cao AH. a) Tính BC b) Chứng minh A ABC S AHBA c) Chứng minh AB = BH BC. Tính BH, HC d) Vẽ phân giác AD của góc A (D eBC). Tính DB Bài 3: Cho hình thang cân ABCD có AB // DC và AB< DC, đường chéo BD vuông góc với cạnh bên BC. Vẽ đường cao AH, AK. a) Chứng minh ABDC O AHBC

b) Chứng minh BC = HC.DC | c) Chứng minh AKD 2ABHC.

c) Cho BC = 15cm, DC = 25 cm. Tính HC , HD. | d) Tính diện tích hình thang ABCD. | Bài 4: Cho AABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường

vuông góc với AC tại C cắt nhau ở K.Gọi M là trung điểm của BC. | a) Chứng minh AADB 2AAEC.

b) Chứng minh HE.HC=HD.HB c) Chứng minh H, K, M thẳng hàng d) AABC phải có điều kiện gì thì tứ giác BHCK là hình thoi? Hình chữ nhật?

 

1

Bài 2:

a: BC=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>BH=36/10=3,6(cm)

=>CH=6,4(cm)

6 tháng 5 2021

a) Ta có :

AD = BC = 6 cm

Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :

1/AD^2 + 1/AB^2 = 1/AH^2

<=> 1/6^2 + 1/8^2 = 1/AH^2

<=> AH = 4,8(cm)

b)

Áp dụng Pitago trong tam giác BCD vuông tại C có :

BC^2 + CD^2 = BD^2

<=> 6^2 + 8^2 = DB^2

<=> BD = 10(cm)

Xét hai tam giác vuông AHB và BCD có :

AH/BC = 4,8/6 = 4/5

AB/BD = 8/10 = 4/5

Do đó tam giác AHB đồng dạng với tam giác BCD

23 tháng 1 2022

giúp😥😥

 

a: DB=10cm

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}=\widehat{BDA}\)

Do đó: ΔADH\(\sim\)ΔBDA

c: Xét ΔBAD vuông tại A có AH là đường cao

nên \(AD^2=DH\cdot DB\)

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng với ΔABD

b: ΔABD vuông tại A có AH là đường cao

nên DA^2=DH*DB

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

DH=6^2/10=3,6cm