Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(x^3-6x^2+12x-8-\left(x^3-6x^2\right)\)
<-> \(x^3-6x^2+12x-8-x^3+6x^2\)
<->12x-8
d)\(x^3+6x^2+12x+8-\left(x^3-6x^2+12x-8\right)\)
\(x^3+6x^2+12x+8-x^3+6x^2-12x+8\)
\(12x^2+16\)
\(a,\left(x+3\right).\left(x^2-3x+9\right)-\left(54+x^3\right)=x^3+27-54-x^3=-27.\)
\(b,8x^3+y^3-8x^3+y^3=2y^3\)
\(299.301=\left(300-1\right)\left(300+1\right)=300^2-1^2=90000-1=89999\)
Q = (1 - 2x)(x - 3)
= x - 3 - 2x2 + 6x
= - 2x2 + 5x - 3
= \(-2\left(x^2-\frac{5}{2}x+3\right)=-2\left(x^2-2.\frac{5}{4}.x+\frac{25}{16}+\frac{23}{16}\right)=-2\left(x-\frac{5}{4}\right)^2-\frac{23}{8}\le-\frac{23}{8}\)
Dấu "=" xảy ra <=> x - 5/4 = 0
=> x = 1,25
Vậy Max Q = -23/8 <=> x = 1,25
Q = ( 1 - 2x )( x - 3 )
= x - 3 - 2x2 + 6x
= -2x2 + 7x - 3
= -2( x2 - 7/2x + 49/16 ) + 25/8
= -2( x - 7/4 )2 + 25/8 ≤ 25/8 ∀ x
Đẳng thức xảy ra <=> x - 7/4 = 0 => x = 7/4
=> MaxQ = 25/8 <=> x = 7/4
Dấu "=" xảy ra khi và chỉ khi x = 2
Vậy Max A = 7 <=> x = 2
Dấu "=" xảy ra khi và chỉ khi x = \(\frac{3}{2}\)
Vậy Min B = \(-\frac{9}{2}\Leftrightarrow x=\frac{3}{2}\)
Vậy Max C = \(\frac{1}{12}\Leftrightarrow x=\frac{1}{6}\)
Bạn có thể giải rõ ra cho mình đc ko, mình ko hiểu bước thứ 2 của các câu trên