K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

Nối BD. Gọi O là trung điểm DB
Xét ABD
Có: M là trung điểm AB ( gt)
O là trung điểm DB ( cách lấy O)
\(\Rightarrow\) OM là đường trung bình ABD
\(\Rightarrow\) OM // AD, OM = 1/2 AD ( đl)
\(\Rightarrow\)góc AEM = OMN ( 2 góc đồng vị) (1)
Tương tụ ta c/m được ON là đường trung bình tam giác DBC
\(\Rightarrow\)ON // BC; ON = 1/2 BC
\(\Rightarrow\)góc OMN = MFB ( 2 góc so le trong) (2)
Mà AD = BC (gt)
\(\Rightarrow\)OM=ON ( 1/2 AD)
Xét OMN
có OM = ON
\(\Rightarrow\)Tam giác OMN cân tại O ( đn)
\(\Rightarrow\)góc OMN = ONM ( đl) (3)
Từ (1); (2); (3) \(\Rightarrow\) góc AEM = MFB ( đpc/m)

30 tháng 8 2015

mk mới lên lớp 8 nên ko bít làm nhìn mún lòi mắt

28 tháng 7 2018

#naruto Có ai hỏi bạn đâu mà trả lời

4 tháng 3 2015

* Hướng dẫn câu b:

Gọi I là giao điểm của Gx và PQ. Kéo dài PQ cắt hai cạnh AD và BC theo thứ tự là E và F.

Góc MPQ = góc GEF (so le trong do MP // AD)

Góc MQP = góc GFE (so le trong do MQ // BC)

góc MPQ = góc MQP (tam giác MPQ cân do MP = MQ)

=> góc GEF = góc GEF -> tam giác GEF cân tại G

mà GI là phân giác của góc G -> GI vuông góc với EF

-> Gx vuông góc với PQ -> Gx // MN (MN vuông góc với PQ do hình thoi có 2 đường chéo vuông góc).

5 tháng 11 2017

Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

Ví dụ :

B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}

Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.