Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tính tổng các số có 3 chữ số
a) Chia hết cho 7.
b) Chia hết cho 8
Bài 2: Tính tổng các số có 3 chữ số
a) Chia cho 5 dư 1.
b) Chia cho 4 dư 2
c) Chia 6 dư 2
Bài 3: Để đánh số trang một quyển sách dày 235 trang cần dùng bao nhiêu chữ số.
Bài 4 : Không thực hiện phép tính hãy cho biết các tích sau tận cùng là bao nhiêu chữ số 0.
a) 1 x 2 x 3 x 4 x 5 x ……… x 20 x 21
b) 1 x 2 x 3 x 4 x 5 x ……. X 47 x 48.
làm hộ tui nữa nha
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)
\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)
hay \(\widehat{ACB}=30^0\)
Vậy: \(\widehat{ACB}=30^0\)
b) Xét ΔADB và ΔEDB có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔADB=ΔEDB(c-g-c)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BC(đpcm)
c) Ta có: BE+EC=BC(E nằm giữa B và C)
BA+AM=BM(A nằm giữa B và M)
mà BE=BA(ΔBED=ΔBAD)
và BC=BM(gt)
nên EC=AM
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔDAB=ΔDEB)
AM=EC(cmt)
Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)
nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)
mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
nên \(\widehat{ADM}+\widehat{ADE}=180^0\)
\(\Leftrightarrow\widehat{EDM}=180^0\)
hay E,D,M thẳng hàng(đpcm)
Bài 2:
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường phân giác
b: Xét ΔAEH và ΔADH có
AH chung
AE=AD
Do đó: ΔAEH=ΔADH
Suy ra: \(\widehat{AEH}=\widehat{ADH}=90^0\)
hay HE\(\perp\)AB
c: Ta có: ΔAED cân tại A
mà AK là đường phân giác
nên AK là đường cao
a) Xét t/giác ADB và t/giác EDB
có: BD : chung
\(\widehat{ABD}=\widehat{EBD}\) (gt)
AB = BE (gt)
=> t/giác ADB = t/giác EDB (c.g.c)
b) Ta có: t/giác ADB = t/giác EDB (cmt)
=> \(\widehat{BAD}=\widehat{BED}\)(2 góc t/ứng)
Mà \(\widehat{BAD}=90^0\)=> \(\widehat{BED}=90^0\)
=> DE \(\perp\)BC
c) Xét t/giác AMD và t/giác ECD
có: AM = EC (gt)
\(\widehat{MAD}=\widehat{DEC}=90^0\)
AD = ED (vì t/giác ADB = t/giác EDB)
=> t/giác AMD = t/giác ECD (c.g.c)
=> MD = DC (2 cạnh t/ứng)
=> \(\widehat{ADM}=\widehat{EDC}\) (2 góc t/ứng)
Ta có: \(\widehat{ADE}+\widehat{EDC}=180^0\) (kề bù)
hay : \(\widehat{ADE}+\widehat{ADM}=180^0\)
=> M, D, E thẳng hàng
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Xét ΔADF và ΔCDE có
DA=DC
\(\widehat{ADF}=\widehat{CDE}\)
DF=DE
Do đó: ΔADF=ΔCDE
Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do dó: AECF là hình bình hành
Suy ra: AF//EC
\(a,\)(Sửa đề: \(\Delta ABD=\Delta EBD\))
Vì \(\begin{cases} AB=BE\\ \widehat{ABD}=\widehat{EBD}\\ BD\text{ chung} \end{cases}\) nên \(\Delta ABD=\Delta EBD(c.g.c)\)
\(\Rightarrow \widehat{BAD}=\widehat{BED}=90^0\\ \Rightarrow DE\bot BC\)
\(b,\Delta ABD=\Delta EBD(cmt)\\ \Rightarrow AD=DE\Rightarrow D\in\text{trung trực }AE\\ AB=BE\Rightarrow B\in \text{trung trực }AE\\ \Rightarrow BD\text{ là trung trực }AE\)
\(c,\begin{cases} \widehat{MAD}=\widehat{CED}=90^0\\ AD=DE\\ AM=EC \end{cases}\\\Rightarrow \Delta ADM=\Delta EDC(c.g.c)\\ \Rightarrow MC=MD\)
\(d,\Delta ADM=\Delta EDC(cmt)\\ \Rightarrow \widehat{ADM}=\widehat{EDC}\)
Mà 2 góc này ở vị trí đối đỉnh và \(A,D,C\) thẳng hàng nên \(M,D,E\) thẳng hàng
a, xét tam giác BAE và tam giác BDE có : BE chung
góc ABE = góc DBE do BE là phân giác của góc ABC (gt)
AB = BD (gt)
=> tam giác BAE = tam giác BDE (c-g-c)
b, tam giác BAE = tam giác BDE (câu a)
=> góc BAE = góc BDE (đn)
mà óc BAE = 90 do tam giác ABC vuông tại A (gt)
=> góc BDE = 90
=> ED _|_ BC (đn)
c, tam giác BAE = tam giác BDE (Câu a)
=> AE = DE (đn)
d, gọi BE cắt CI tại O
AB = BD (gt)
AI = DC (gt)
AB + AI = BI
BD + DC = BC
=> BI = BC
xét tam giác IOB và tam giác COB có : OB chung
góc IBO = góc CBO do BO là phân giác của góc IBC (gt)
=> tam giác IOB = tam giác COB (c-g-c)
=> góc IOB = góc COB (đn)
mà góc IOB + góc COB = 180 (kb)
=> góc IOB = 180 : 2 = 90
=> BO _|_ CI (đn)
CA _|_ AB do góc BAC = 90
xét tam giác IBC
=> ID _|_ BC (tc)
mà ED _|_ BC (câu b)
=> I; E; D thẳng hàng