K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

_Hình tự vẽ_

a,vì tam giác ABC vuông tại A =>góc A=90 độ và góc B=60 độ(gt)

    áp dụng định lí tổng 3 góc trong 1 tam giác :<A+<B+<C=180 độ

                                                                           =><C= 180 -90-60=30(độ)

                                                        hay <ACB=30 độ

b, Xét tam giác ABD và EBD có:

              BD-cạnh chung

               <ABD=<DBE(vì bd phân giác <B)

 => tam giác ABD=tam giác EBD (ch-gn)

c,(tự làm)

d,(hình như đề sai cạu ạk)-(đề ko cho cạnh AC bằng b.nhiêu)

   

3 tháng 3 2020

2 câu đầu mk bik lm ròi m nhờ mn lm 2 câu cuối mà

1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

2: Ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔABE đều

d) +) Xét \(\Delta\)ABC vuông tại A

=> \(\widehat{ABC}+\widehat{ACB}=90^o\)  ( tính chất tam giác vuông )

\(\Rightarrow\widehat{ACB}=30^o\)

+) Xét \(\Delta\)ABC vuông tại A có \(\widehat{ACB}=30^o\)

=> BC = 2 AB ( áp dụng tính chất trong 1 tam giác vuông có 1 góc = 30 độ thì cạnh huyền sẽ bằng 2 lần cạnh đối diện vs góc 30 độ  )

=> BC = 2. 5 

=> BC = 10 ( cm)
Vậy BC = 10 (cm )

1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

2: Ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔABE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔABE đều

3: Xét ΔABC vuông tại A có 

\(\cos B=\dfrac{AB}{BC}=\dfrac{5}{BC}\)

=>BC=10(cm)

1/ Chứng minh: ΔΔABD = ΔΔEBD

Xét  ΔΔABD và ΔΔEBD, có:

            ˆBAD=ˆBED=900BAD^=BED^=900

            BD là cạnh huyền chung

            ˆABD=ˆEBDABD^=EBD^ (gt)

Vậy ΔΔABD = ΔΔEBD  (cạnh huyền – góc nhọn)

2/ Chứng minh:ΔΔABE là tam giác đều.

ΔΔABD =ΔΔEBD (cmt)

=> AB = BE

mà  ˆB=600B^=600  (gt)

Vậy  ΔΔABE có  AB = BE và   nên  ΔΔABE đều.

3/  Tính độ dài cạnh BC

Ta có :  Trong ΔΔ ABC vuông tại A có ˆA+ˆB+ˆC=1800A^+B^+C^=1800 

               mà ˆA=900;ˆB=600(gt)A^=900;B^=600(gt)  => ˆC=300C^=300

 Ta có  :  ˆBAC+ˆEAC=900BAC^+EAC^=900 (ΔΔABC vuông tại A)

                Mà ˆBAE=600BAE^=600(ΔΔABE đều)  nên ˆEAC=300EAC^=300

Xét ΔΔEAC có ˆEAC=300EAC^=300 và ˆC=300C^=300 nên ΔΔEAC cân tại E

            => EA = EC mà EA = AB = EB = 5cm

Do đó EC = 5cm

Vậy BC = EB + EC = 5cm + 5cm = 10cm

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

Bổ sung đề: \(\widehat{ABC}=60^0\)

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE(hai cạnh tương ứng)

Xét ΔABE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔABE cân tại B có \(\widehat{ABE}=60^0\)(gt)

nên ΔABE đều(Dấu hiệu nhận biết tam giác đều)

c) Xét ΔABC vuông tại A có 

\(\cos\widehat{B}=\dfrac{AB}{BC}\)

\(\Leftrightarrow BC=\dfrac{AB}{\cos60^0}=\dfrac{5}{\dfrac{1}{2}}=10\left(cm\right)\)

Vậy: BC=10cm

8 tháng 3 2023

`a)`

+, `Delta ABC` vuông tại `A(GT)=>hat(A)=90^0`

`DE⊥BC(GT)=>hat(BED)=90^0`

`BD` là p/g của `hat(ABC)(GT)=>hat(B_1)=hat(B_2)`

Xét `Delta ABD` và `Delta EBD` có :

`{:(hat(A)=hat(BED)(=90^0)),(BD-chung),(hat(B_1)=hat(B_2)(cmt)):}}`

`=>Delta ABD=Delta EBD(c.h-g.n)(đpcm)`

+, Có `Delta ABD=Delta EBD(cmt)`

`=>BA=BE` ( 2 cạnh t/ứng ) `(đpcm)`

`b)` 

Có `BA=BE(cmt)`

`=>Delta ABE` cân tại `B`

mà `hat(ABE)=60^0(hat(ABC)=60^0)`

nên `Delta ABC` đều `(đpcm)`

`c)`

Có `Delta ABC` vuông tại `A=>hat(ABC)+hat(C)=90^0`

hay `60^0+hat(C)=90^0`

`=>hat(C)=90^0-60^0=30^0` (1)

`Delta ABE` đều `(cmt)=>hat(A_1)=60^0`

`=>hat(A_2)=30^0` (2)

Từ `(1)` và `(2)=>Delta EAC` cân tại `E`

`=>AE=EC` 

Có `Delta ABE` đều `(cmt)=>AB=AE` 

mà `AE=EC(cmt)`

`{:(nên EC=AB),(mà AB=EB(cmt);AB=5cm):}}`

`=>EC=EB=5cm`

Vậy `BC=EC+EB=5+5=10(cm)`

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE

b: BA=BE và góc ABE=60 độ

=>ΔBAE đều

c: Xét ΔABC vuông tại A có cos B=AB/BC

=>5/BC=1/2

=>CB=10cm

19 tháng 3 2019

a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD 

Suy ra góc ABD = góc EBD 

Vậy tam giác ABD = tam giác EBD 

b) Ta có: AB=EB ( tam giác ABD = tam giác EBD ) 

Suy ra tam giác ABE cân tại B 

Tam giác ABE cân tại B có góc EBA =60 độ 

Suy ra tam giác ABE là tam giác đều 

c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ 

Suy ra ACB = 30 độ 

Suy ra tam giác ABC là nửa tam giác đều  

Suy ra AB = 1/2 BC 

Suy ra BC = 2AB = 2 . 5 = 10 cm

chúc bạn học tốt! smileyyesheartwink

19 tháng 3 2019

d) như phần c nha bn