K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 9 2020

\(MG=\frac{1}{4}GA\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\frac{3}{4}\overrightarrow{GA}\\\overrightarrow{MA}=3\overrightarrow{GM}\end{matrix}\right.\)

\(2\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)

\(=\overrightarrow{MA}+3\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=3\overrightarrow{GM}+3\overrightarrow{MG}+\overrightarrow{0}=\overrightarrow{0}\)

b/

Đề sai, đẳng thức đúng phải là: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=3\overrightarrow{GG'}\)

c/

Đề tiếp tục có vấn đề \(4\overrightarrow{IO}\) ở vế phải điểm O là điểm nào?

15 tháng 11 2021

\(a,\) \(\overrightarrow{IA}=2\overrightarrow{IB}-4\overrightarrow{IC}\)

\(\overrightarrow{IA}=2\overrightarrow{IB}-2\overrightarrow{IC}-2\overrightarrow{IC}=2\overrightarrow{CB}-2\overrightarrow{IC}\)

\(=2\left(\overrightarrow{AB}-\overrightarrow{AC}\right)-2\left(\overrightarrow{AC}-\overrightarrow{AI}\right)\)

\(\overrightarrow{IA}=2\overrightarrow{AB}-2\overrightarrow{AC}-2\overrightarrow{AC}+2\overrightarrow{AI}\)

\(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}\)

\(b,\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}=\dfrac{4}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(1\right)\)

\(\overrightarrow{JG}=\overrightarrow{AG}-\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AM}-\dfrac{2}{3}\overrightarrow{AB}\)\((\) \(\) \(M\)  \(trung\) \(điểm\) \(BC)\)

\(\overrightarrow{JG}=\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{3}-\dfrac{2}{3}\overrightarrow{AB}=-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=-\dfrac{1}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\overrightarrow{IJ}=-4\overrightarrow{JG}\Rightarrow I,J,G\) \(thẳng\) \(hàng\)

4 tháng 1 2021

Gt ⇒ \(2\left|\overrightarrow{MC}+\overrightarrow{MA}+\overrightarrow{MB}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)

Do G là trọng tâm của ΔABC

⇒ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)

⇒ VT = 6MG

I là trung điểm của BC

⇒ \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\)

⇒ VP = 6MI

Khi VT = VP thì MG = MI

Vậy tập hợp các điểm M thỏa mãn ycbt là đường trung trực của đoạn thẳng IG

 

7 tháng 11 2021

c) \(\overrightarrow{BG}+\overrightarrow{GC}=\overrightarrow{BC}\ne\overrightarrow{GA}\)

d) \(\overrightarrow{GB}+\overrightarrow{GC}=\dfrac{1}{2}\overrightarrow{GM}\ne\overrightarrow{GM}\)

 

NV
8 tháng 9 2021

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{AB}+\overrightarrow{AD}\)

\(\Leftrightarrow\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}=\overrightarrow{AC}\)

\(\Leftrightarrow4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{AO}\)

\(\Leftrightarrow4\overrightarrow{MO}=2\overrightarrow{OA}\)

\(\Leftrightarrow\overrightarrow{MO}=\dfrac{1}{2}\overrightarrow{AO}\)

\(\Rightarrow M\) là trung điểm OA

8 tháng 9 2021

C

NV
3 tháng 12 2021

\(T=\overrightarrow{GA}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}-\overrightarrow{GA}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}-\overrightarrow{GB}\right)\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}+\overrightarrow{AG}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}+\overrightarrow{BG}\right)\)

\(=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{AC}.\overrightarrow{BA}\)

\(=0\)

NV
18 tháng 8 2021

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=a\) (a>0 mới đúng, độ dài ko thể nhỏ hơn 0)

\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=a\)

\(\Leftrightarrow3\left|\overrightarrow{MG}\right|=a\) (do \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\))

\(\Leftrightarrow MG=\dfrac{a}{3}\)

\(\Rightarrow\) Tập hợp M là đường tròn tâm G bán kính \(\dfrac{a}{3}\)

Chọn C

NV
12 tháng 11 2021

1.

\(\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{AI}=\overrightarrow{0}\Leftrightarrow\overrightarrow{IB}+\overrightarrow{AC}=0\)

\(\Leftrightarrow\overrightarrow{IB}=\overrightarrow{CA}\)

\(\Rightarrow\) I là 1 đỉnh của hình bình hành ABIC

2.

Gọi N là trung điểm AB \(\Rightarrow\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AB}\)

\(\overrightarrow{MA}+\overrightarrow{BM}+2\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BA}+2\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MC}=\dfrac{1}{2}\overrightarrow{AB}\Leftrightarrow\overrightarrow{MC}=\overrightarrow{AN}\)

\(\Rightarrow\) M là 1 đỉnh của hình bình hành ANCM