K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Điều kiện x, y  0. Trừ hai phương trình của hệ cho nhau ta thu được

x 2 + x − y 2 + y = 2 y − x ⇔ x − y x + y x + y + 1 + 2 x + y = 0

x + y x + y + 1 + 2 x + y > 0 nên phương trình đã cho tương đương với x = y

Thay x = y vào phương trình x 2 + x =   2 y ta được x 2 + x = 2 x

⇔ x 2 – 2 x + x = 0   ⇔ x 2 – x − x + x = 0   ⇔ x ( x – 1 ) - x x - 1 = 0 ⇔ x x - 1 x + 1 - x x - 1 = 0 ⇔ x x − 1 x + x − 1 = 0 ⇔ x = 0 → y = 0 x = 1 → y = 1 x + x − 1 = 0     *

Ta có phương trình (*)  ⇔ x + 1 2 2 − 5 4 = 0 ⇔ x + 1 2 2 = 5 2 2

⇔ x = 5 − 1 2 x = − 5 − 1 2    L ⇒ x = 3 − 5 2 ⇒ y = 3 − 5 2

Vậy hệ có 3 cặp nghiệm (x; y)  ∈ 0 ; 0 , 1 ; 1 , 3 − 5 2 ; 3 − 5 2

Suy ra có hai cặp nghiệm thỏa mãn đề bài.

Đáp án:C

8 tháng 7 2016

\(hpt\Leftrightarrow\hept{\begin{cases}m\left(m+1\right)x+2my=4m-2m^2\\\left(2-m\right)x+my=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m^2+2m-2\right)x=-2m^2+4m-1\\\left(2-m\right)x+my=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2m^2+4m-1}{m^2+2m-2}\\y=\frac{1-\left(2-m\right)x}{m}\end{cases}}\)

Chọn A

Câu 1: (0,25đ) Cặp số (1; 2) là một nghiệm của phương trình bậc nhất 2 ẩn nào sau đây?  B. - 2x - y = 0 C. 2x - y = 0 D. 3x - y = 0 A. 2x + y = 1. Câu 2: (0,25đ) Trọng các phương trình bậc nhất 2 ẩn sau, hệ  phương trình nào có vô nghiệm?  xy = 1 (xy = 1 (xy = 1 xy = 1 B. -2x - v = 0 CDA (2x + y = 1 2x- 2y = 2 | 2x + y = 0 Câu 3: (0,25đ) Đồ thị hàm  số y = -2x? đi qua điểm nào sau đây? A. (2; -1) B. (-1; -2) C. (1; 2) D. (-1; 2) Câu 4: (0  , 25đ)...
Đọc tiếp

Câu 1: (0,25đ) Cặp số (1; 2) là một nghiệm của phương trình bậc nhất 2 ẩn nào sau đây?  B. - 2x - y = 0 C. 2x - y = 0 D. 3x - y = 0 A. 2x + y = 1. Câu 2: (0,25đ) Trọng các phương trình bậc nhất 2 ẩn sau, hệ  phương trình nào có vô nghiệm?  xy = 1 (xy = 1 (xy = 1 xy = 1 B. -2x - v = 0 CDA (2x + y = 1 2x- 2y = 2 | 2x + y = 0 Câu 3: (0,25đ) Đồ thị hàm  số y = -2x? đi qua điểm nào sau đây? A. (2; -1) B. (-1; -2) C. (1; 2) D. (-1; 2) Câu 4: (0  , 25đ) Đồ thị hàm số y = ax² đi qua điểm M (-3; -18) Khi đó a bằng: C. 3 D. - 3 A. -2 Câu 5: (0,25đ) Phương trình 2x?  - 3x - 4 = 0 có A. A = - 23 Câu 6: (0,25đ) Trong các phương trình bậc hai ẩn sau, phương trình nào vô nghiệm? A. x - 2x + 1 = 0 B. B. A = 9  C. A = 41 D. A = 17 B. x -4x + 3 = 0 C. 2r - 2x + 5 = 0 D. 2x - 2.x-7 = 0 Câu 7: (0,25đ) Cho (O  ) đường kính AB, tiếp tuyến Ax như hình vẽ bên. Quan sát hình vẽ cho biết câu nào sai trong các yêu cầu sau: A. Hai góc nội tiếp chắc chắn cung BC là BAC và BDC B. XAD là góc tạo bởi tia tiếp  tuyến và dây cung C. ADB là góc nội tiếp chắn nửa đường tròn D. ACB là góc nhọn Câu 8: (0,25đ) Tứ giác ABCD nội tiếp đường tròn (O) có Â = 100 °. Số đo góc C là  : A. 80 ° B. 100 ° C. 180 ° D. 50 °

0
4 tháng 11 2019

Từ PT (1) ta có: y = (a + 1)x – (a + 1) (*) thế vào PT (2) ta được:

x + ( a – 1 ) [ ( a + 1 ) x – ( a + 1 ) ] = 2   x + ( a 2 – 1 ) x – ( a 2 – 1 ) = 2

⇔ a 2 x = a 2 + 1   ( 3 )

Với a ≠ 0, phương trình (3) có nghiệm duy nhất x = a 2 + 1 a 2 . Thay vào (*) ta có:

y = ( a + 1 ) a 2 + 1 a 2 − ( a + 1 ) = a + 1 a 2 + 1 − a 2 a 2 + 1 a 2 = a 3 + a + a 2 + 1 − a 3 − a 2 a 2 = a + 1 a 2  

Suy ra hệ phương trình đã cho có nghiệm duy nhất ( x ;   y ) = a 2 + 1 a 2 ; a + 1 a 2

Hệ phương trình có nghiệm nguyên: x ∈ ℤ y ∈ ℤ ⇔ a 2 + 1 a 2 ∈ ℤ a + 1 a 2 ∈ ℤ ( a ∈ ℤ )  

Điều kiện cần: x = a 2 + 1 a 2 = 1 + 1 a 2 ∈ ℤ ⇔ 1 a 2 ∈ ℤ mà a 2 > 0   ⇒ a 2 = 1

⇔ a = ± 1 ( T M   a ≠ 0 )

Điều kiện đủ:

a = −1 ⇒  y = 0  (nhận)

a = 1 y = 2  (nhận) 

Vậy a = ± 1 hệ phương trình đã cho có nghiệm nguyên.

Đáp án: D

a: =>(x-7)(x+3)=0

hay \(x\in\left\{7;-3\right\}\)

b: =>2x+7=0

hay x=-7/2

c: \(\Delta=50-4\cdot6\cdot2=50-48=2\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{5\sqrt{2}-\sqrt{2}}{12}=\dfrac{\sqrt{2}}{3}\\x_2=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

30 tháng 12 2018

Từ hệ được x+y=1

a)Thay vào được x=1;y=0

b)Với mọi a

c)Thay vào x+y=1 tìm x;y

Thay ngược vào hệ tìm a

31 tháng 12 2018

a) Khi a = 2 hệ phương trình đã cho tương đương với:

 \(\hept{\begin{cases}x+2x=3\left(1\right)\\2x-y=2\left(2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=3\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\2x-2=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\2.1-2=0=y\end{cases}}\)

Do vậy \(\left(x;y\right)=\left(1;0\right)\)

b) Ta có:  \(x+y=\left(x+ax\right)-\left(ax-y\right)=3-2=1>0\forall a\)

c) Lấy (1) trừ (2),vế với vế,ta có: \(x+y=1\)

Thay vào,ta có: \(\sqrt{2}.y+y=1\Leftrightarrow y\left(\sqrt{2}+1\right)=1\)

\(\Rightarrow y=\frac{1}{\sqrt{2}+1}\Rightarrow x=1-\frac{1}{\sqrt{2}+1}=\frac{\sqrt{2}}{\sqrt{2}+1}\)

Thay vào hệ phương trình ban đầu,ta có: \(\hept{\begin{cases}\frac{\sqrt{2}}{\sqrt{2}+1}+\frac{\sqrt{2}}{\sqrt{2}+1}.a=3\left(3\right)\\\frac{\sqrt{2}}{\sqrt{2}+1}.a-\frac{\sqrt{1}}{\sqrt{2}+1}=2\left(4\right)\end{cases}}\)

Lấy (3) + (4),vế với vế,ta có: \(\frac{2\sqrt{2}}{\sqrt{2}+1}.a=5\Leftrightarrow a=\frac{10+5\sqrt{2}}{4}\)