Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lý `1` của tam giác `->`\(\widehat{B}>\widehat{A}>\widehat{C}\)
a) Xét ΔABC có AB=BC>AC(6cm=6cm>4cm)
mà góc đối diện với cạnh AB là góc ACB
và góc đối diện với cạnh BC là góc BAC
và góc đối diện với cạnh AC là góc ABC
nên \(\widehat{ACB}=\widehat{BAC}>\widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
b) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Xét ΔABC có AB<BC<AC(6cm<8cm<10cm)
mà góc đối diện với cạnh AB là góc ACB
và góc đối diện với cạnh BC là góc BAC
và góc đối diện với cạnh AC là góc ABC
nên \(\widehat{ACB}< \widehat{BAC}< \widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
Dựa vào hình vẽ, ta có:
Góc đối diện cạnh BC là Â
Góc đối diện cạnh AC là B̂
Góc đối diện cạnh AB là Ĉ
Mà: Trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn
Tam giác ABC có AB = 2cm, BC = 4cm, AC = 5cm ⇒ AB < BC < CA ⇒ Ĉ < Â < B̂.
1/ Ta có BC > AC > AB (7cm > 6cm > 5cm) => \(\widehat{A}>\widehat{B}>\widehat{C}\) (quan hệ giữa góc và cạnh đối diện trong tam giác)
2/ Ta có \(\widehat{C}=180^o-\widehat{A}-\widehat{B}\)(tổng ba góc của một tam giác)
=> \(\widehat{C}\)= 180o - 65o - 70o = 45o
=> \(\widehat{B}>\widehat{A}>\widehat{C}\)=> AC > BC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)
3/ Ta có 18cm > 6cm + 11cm = 17cm không thoả mãn bất đẳng thức tam giác
=> Bộ ba (18cm; 6cm; 11cm) không phải là ba cạnh của một tam giác
Trong tam giác ABC có:
AB = 2cm ; BC = 4cm ; AC = 5cm
=> AB < BC < CA nên
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Ta có:\(AB>AC< BC\)
\(\Leftrightarrow\widehat{C}>\widehat{A}>\widehat{B}\)