Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/(2x2)+1/(3x3)+...+1/(100x100)
Nhận thấy rằng n x n -1=n x n -n+n-1=n x (n-1)+n-1=(n-1) x (n+1)
=> A < 1/(2x2-1)+1/(3x3-1)+...+1/(100x100-1)=1/(1x3)+1/(3x5)+...+1/(99x101)=1/2-1/202<1/2<3/4
A=1/(2x2)+1/(3x3)+...+1/(100x100) Nhận thấy rằng n x n -1=n x n -n+n-1=n x (n-1)+n-1=(n-1) x (n+1) => A < 1/(2x2-1)+1/(3x3-1)+...+1/(100x100-1)=1/(1x3)+1/(3x5)+...+1/(99x101)=1/2-1/202<1/2<3/4
1 và 1/4 + 1/9 +.....+1/1000
Như vậy ta có:
1/4 + 1/9 +....+1/1000 = 1/....
Cho nên => 1 > 1/4 +1/9 +....+1/1000
A = 1/4 +1/9 + 1/16 + 1/25 + 1/36
= ( 1/4 + 1/16 ) + ( 1/9 + 1/36) + 1/25
= 5/16 + 5/36 + 1/25
= 65/144 + 1/25
= 1769/3600
=> 1769/3600 < 5/6 (hay 1769/3600 < 3000/3600 -quyđồng-)
Vậy A< 5/6
Đúng nhé, tk cho mjk với-số to thiệt nhưng đúng mà-
\(N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)
\(N>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
\(N>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{10}{22}>\frac{9}{22}\)
Vậy N > 9/22
Ta có\(A=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}\right)\)\(>1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+4\times\frac{1}{8}+4\times\frac{1}{12}+4\times\frac{1}{16}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(=1+2\times\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)
\(>1+2\times\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=1+2=3=B\)
\(\Rightarrow A>B\)
a) Quy đồng pso và tính như bthg (4824829/6350400)
b) Vì 4814819 < 6350400 => A < 1
Các bạn giúp mình trả lời câu hỏi này với
Mik tra loi trong cau hoi truoc roi A>B