Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)
Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)
Đặt A=1/10+1/11+1/12+...+1/99+1/100 (91 số hạng)
A=1/10+(1/11+1/12+...+1/99+1/100)
Vì 1/11>1/100
1/12>1/100
..................
1/99>1/100
Suy ra: A>1/10+(1/100+1/100+...+1/100) (90 số hạng 1/100)
A>1/10+90/100
A>1
Vậy 1/10+1/11+1/12+...+1/99+1/100>1
Nếu đồng ý vs câu trả lời của mk thì k cho mk nhé! Thanks!
P=1/10+1/11+...+1/100=1/10+(1/11+1/12+...+1/50)+(1/51+1/52+...+1/100)
Đặt A = 1/11+1/12+1/13+...+1/50
A có (50-11):1+1=40(số hạng)
Lại có: 1/11>1/12>...>1/50
=>1/11+1/12+1/13+...+1/50>1/50+1/50+...+1/50(40 số hạng)
=>A>4/5
Đặt B =1/51+1/52+...+1/100
B có (100-51):1+1=50 (số hạng)
Lại có : 1/51>1/52>...>1/100
=>1/51+1/52+1/53+...+1/100>1/100+1/100+...+1/100(50 số hạng)
=>B>1/2
=>P>1/10+4/5+1/2
=>P>14/10
=>P>1
Vậy P>1
\(B=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{1}{30}\cdot20=\frac{2}{3}\)
\(B< \frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{1}{10}\cdot20=2\)
\(\Rightarrow\frac{99}{100}< \frac{2}{3}< B< 2\)
Câu hỏi của Nguyễn Văn Bình - Toán lớp 6 - Học toán với OnlineMath
1/100<1
ch h t,nhớ mk cho m nha