Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a | b | c |
d | e | f |
g | h | i |
Theo đề bài, ta có;
\(a+b+c=a+d+g=c+f+i=g+h+i\)
\(=b+e+h=d+e+f=a+e+i=c+e+g\)
Từ đó ta có \(a+b+c+a+d+g+c+f+i+g+h+i\)\(=b+e+h+d+e+f+a+e+i+c+e+g\)
hay \(2a+2c+2g+2i+b+d+f+h=4e+a+b+c+d+f+g+h+i\)
hay \(a+c+g+i=4e\) (1)
Mặt khác \(a+b+c=b+e+h\)\(\Leftrightarrow a+c=e+h\)
Và \(g+h+i=b+e+h\)\(\Leftrightarrow g+i=b+e\)
Vậy \(4e=e+b+e+h\)hay \(2e=b+h\)hay \(4e=2\left(b+h\right)=\left(b+h\right)+\left(b+h\right)\)
Do \(d+e+f=b+e+h\)nên \(d+f=b+h\), từ đó \(4e=b+d+f+h\)(2)
Từ (1) và (2) ta có: \(8e=a+b+c+d+f+g+h+i\)hay \(e=\frac{a+b+c+d+f+g+h+i}{8}\)
Và đó là đpcm
đây là toán tổ hợp rời rạc nên là bài của ĐT nên chắc em hiểu khái niệm về tổ hợp và chỉnh hợp chập k của n rồi nhỉ?
Ta sẽ có bài tổng quát sau nhé:
Cho hcn nx(n(n-1)+1) được tô bởi 2 màu xanh đỏ, Chứng minh rằng luôn tồn tại 1 hcn đặc biệt mà với mọi cách tô ta luôn có 4 góc cùng màu
CM: với n lẻ, (TH n chẵn CM tương tự)
Trong 1 cột luôn có ít nhất \(\frac{n+1}{2}\)ô cùng màu, và có \(\frac{n+1}{2}.C^{\frac{n+1}{2}}_n\)cách sắp xếp chúng trong cột 1
Mà có tất cả \(n^3-n^2+n\)ô => sẽ có ít nhất \(\frac{n^3-n^2+n+1}{2}\)ô cùng màu
do vậy trong n(n-1) cột còn lại luôn tồn tại 1 cột có cách tô màu cùng với cách tô ở cột 1
đó chính là hình chữ nhật cần tìm
ÁP DỤNG BÀI NÀY: ta dễ dàng tìm ra n=7
lời giải tổng quát có thể hơi khó hiểu nhưng áp dụng cụ thể cho bài này em sẽ thấy dễ hieur nhé!
PT của em bị sai rồi nhé.
Ở vế trái em biểu diễn theo đơn vị km $48a$
Tuy nhiên ở vế phải em lại biểu diễn theo cả km và giờ (ví dụ $48.1$ là đơn vị km nhưng $\frac{1}{4}$ là đơn vị giờ). Mà 2 cái khác đơn vị thì không cộng được với nhau.
1)C 2)A